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One main issue, when numerically integrating autonomous Hamiltonian systems, is the
long-term conservation of some of its invariants; among them the Hamiltonian function
itself. For example, it is well known that classical symplectic methods can only exactly pre-
serve, at most, quadratic Hamiltonians. In this paper, we report the theoretical foundations
which have led to the definition of the new family of methods, called Hamiltonian Boundary
Value Methods (HBVMs). HBVMs are able to exactly preserve, in the discrete solution, Ham-
iltonian functions of polynomial type of arbitrarily high degree. These methods turn out to
be symmetric and can have arbitrarily high order. A few numerical tests confirm the the-
oretical results.

� 2014 Elsevier B.V. All rights reserved.
1. Foreword

The numerical solution of Hamiltonian problems is a relevant issue of investigation since many years: we refer to the
recent monographs [1,2] for a comprehensive description of this topic, and to the references therein.

In a certain sense, the use of a numerical method acts as introducing a small perturbation in the original system which, in
general, destroys all of its first integrals. The study of the preservation of invariant tori in the phase space of nearly integrable
Hamiltonian systems has been a central theme in the research since the pioneering work of Poincaré, the final goal being to
asses the stability of the solar system. From a numerical point of view, results in this respect are still poor, and this is justified
by considering the delicacy of the problem: as testified by KAM theory, even small Hamiltonian perturbations of completely
integrable systems do not prevent the disappearance of most of the tori, unless a Diophantine condition on the frequencies of
the unperturbed system is satisfied.

At the times when research on this topic was started, there were no available numerical methods possessing such con-
servation features. A main approach to the problem was the devising of symplectic methods. However, though the numerical
solution generated by symplectic (and/or symmetric) methods shows some interesting long-time behavior (see, for example,
[1, Theorems X.3.1 and XI.3.1]), it was observed that symplecticity alone can only assure, at most, the conservation of qua-
dratic Hamiltonian functions, unless they are coupled with some projection procedure (see, e.g., [1,20, Section IV.4]). In the
general case, conservation cannot be assured, even though a quasi-preservation can be expected for reversible problems,
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when symmetric methods are used. On the other hand, a numerical ‘‘drift’’ can be sometimes observed in the discrete solu-
tion [3,4]. One of the first successful attempts to solve the problem of loss of conservation of the Hamiltonian function by the
numerical solution, is represented by discrete gradient methods (see [5] and references therein). Purely algebraic approaches
have been also introduced (see, e.g., [6]), without presenting any energy-preserving method.

A further approach was considered in [7], where the averaged vector field method was proposed and shown to conserve the
energy function of canonical Hamiltonian systems. As was recently outlined (see [8]), approximating the integral appearing
in such method by means of a quadrature formula (based upon polynomial interpolation) yields a family of second order
Runge–Kutta methods. These latter methods represent an instance of energy-preserving Runge–Kutta methods for polyno-
mial Hamiltonian problems: their first appearance may be found in [9], under the name of s-stage trapezoidal methods. Addi-
tional examples of fourth and sixth-order Runge–Kutta methods were presented in [10,11].

In [9–11], the derivation of such energy-preserving Runge–Kutta formulae relies on the definition of the so called ‘‘dis-
crete line integral’’, first introduced in [12]. However, a comprehensive analysis of such methods has not been carried out
so far, so that their properties were not known and, moreover, their practical construction was difficult.

This was the situation when the results in the unpublished work [17] were obtained. Later on, there has been a flourishing
of new results on energy-preserving methods, which we do not mention here. One of the aims of the present paper is to give
an account about the theoretical foundations of the class of energy-preserving Runge–Kutta methods, named Hamiltonian
Boundary Value Methods (HBVMs). Even though they were derived in 2009, the results reported here have remained unpub-
lished, so far. The first two authors agreed to publish them, in memory of the third author (passed away on September 18,
2011) on the occasion of the second death anniversary. The remaining part of the paper is essentially unchanged, with
respect to the original version, including the references (apart [17,18], the latter being the proceedings of the conference
where the methods were presented, and [19], introduced to answer to one of the referees), though the arguments have been
slightly rearranged, to improve clarity.

2. Introduction

In this paper we derive and analyse symmetric methods, of arbitrarily high order, able to preserve Hamiltonian functions
of polynomial type, of any specified degree. Such methods are named Hamiltonian Boundary Value Methods (HBVMs), since
the above approach has been at first studied in the framework of block Boundary Value Methods (see, e.g., [10,11]). The latter
are block one-step methods [13]. However, the equivalent Runge–Kutta formulation of HBVMs will be here also considered.
Before that, we need to introduce the background information concerning the approach. Let then
y0 ¼ JrHðyÞ; yð0Þ ¼ y0 2 R2m; ð1Þ
be a Hamiltonian problem in canonical form, where, by setting as usual Im the identity matrix of dimension m,
J ¼
Im

�Im

� �
ð2Þ
and where the Hamiltonian function, HðyÞ, is hereafter assumed to be a polynomial of degree m. It is well known that, for any
y� 2 R2m,
Hðy�Þ � Hðy0Þ ¼
Z

y0!y�
rHðyÞT dy ¼

Z 1

0
r0ðtÞTrHðrðtÞÞdt; ð3Þ
where r : ½0;1� ! R2m is any smooth function such that
rð0Þ ¼ y0; rð1Þ ¼ y�:
In particular, over a trajectory, yðtÞ, of (1), one has
HðyðtÞÞ � Hðyð0ÞÞ ¼
Z t

0
rHðyðsÞÞT y0ðsÞds ¼

Z t

0
rHðyðsÞÞT JrHðyðsÞÞds ¼ 0;
due to the fact that matrix J in (2) is skew-symmetric.
Here we consider the case where rðtÞ is a polynomial of degree s yielding an approximation to the true solution yðtÞ in the

time interval ½0;h� which, without loss of generality, is hereafter normalized to ½0;1�. More specifically, given the sþ 1
abscissae
0 ¼ c0 < c1 < � � � < cs ¼ 1 ð4Þ
and the approximations yi � yðciÞ;rðtÞ is meant to be defined by the interpolation conditions
rðciÞ ¼ yi; i ¼ 0; . . . ; s: ð5Þ
Actually, the approximations fyig will be unknown, until the new methods will be fully derived.
A different, though related concept, is that of collocating polynomial for the problem, at the abscissae (4). It is the unique

polynomial uðtÞ, of degree sþ 1, satisfying
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uð0Þ ¼ y0; and u0ðciÞ ¼ JrHðuðciÞÞ; i ¼ 0; . . . ; s: ð6Þ
It is well known that (6) define a Runge–Kutta collocation method. Moreover, the set of abscissae (4) defines a corresponding
quadrature formula with weights
bi ¼
Z 1

0

Ys

j¼0; j–i

t � cj

ci � cj
dt; i ¼ 0;1; . . . ; s; ð7Þ
which has degree of precision ranging from s to 2s� 1, depending on the choice of the abscissae (4). In particular, the highest
degree of precision is obtained by using the Lobatto abscissae, which we shall consider in the sequel.2 The underlying collo-
cation method has, then, order 2s.

Remark 1. Choosing a Gauss distribution of the abscissae fcig raises the degree of precision of the related quadrature
formula to 2sþ 1. In such a case, it is interesting to observe that applying (3) along the trajectory uðtÞ and exploiting the
collocation conditions (6), one gets
Hðuð1ÞÞ � Hðuð0ÞÞ ¼
Z 1

0
u0ðtÞTrHðuðtÞÞdt ¼

Xs

i¼0

biu0ðciÞTrHðuðciÞÞ þ Rs ¼ Rs; ð8Þ
where Rs is the error in the approximation of the line integral. Therefore, Hðuð1ÞÞ ¼ Hðuð0ÞÞ if and only if Rs ¼ 0, which is
implied by assuming that the quadrature formula with abscissae fcig and weights fbig is exact when applied to the integrand
u0ðtÞTrHðuðtÞÞ. However, since the integrand has degree
sþ ðm� 1Þðsþ 1Þ ¼ mðsþ 1Þ � 1;
it follows that the maximum allowed value for m is 2. Indeed, it is well known that quadratic invariants are preserved by
symmetric collocation methods. On the other hand, when m > 2, in general Rs does not vanish, so that Hðuð1ÞÞ– Hðuð0ÞÞ.

The above remark gives us a hint about how to approach the problem. Note that in (8) demanding that each term of the
sum representing the quadrature formula is null (i.e., the conditions (6)), is an excessive requirement to obtain the conser-
vation property, which causes the observed low degree of precision. A weaker assumption, that would leave the result
unchanged, is to relax conditions (6) so as to devise a method whose induced quadrature formula, evaluated on a suitable
line integral that links two successive points of the numerical solution, is exact and, at the same time, makes the correspond-
ing sum vanish, without requiring that each term is zero. More precisely, in the new methods, conditions (6) will turn out to
be replaced by relations of the form
r0ðciÞ ¼
X

j

bijJrHðrðcjÞÞ;
which resemble a sort of extended collocation condition (see also [11, Section 2]) since r0ðciÞ brings information from the glo-
bal behavior of the problem in the time interval ½0;h� (see (17)–(33) in Section 3 and the analogues in Section 4). In this sense,
the methods that we shall devise can be regarded as a kind of extended collocation methods.

If we use rðtÞ instead of uðtÞ, the integrand function in (3) has degree ms� 1 so that, in order for the quadrature formula to
be exact, one would need say, kþ 1 points, where
k ¼ ms
2

l m
; ð9Þ
if the corresponding Lobatto abscissae are used. Of course, in such a case, the vanishing of the quadrature formula is no
longer guaranteed by conditions (6) and must be obtained by a different approach. For this purpose, let
r ¼ k� s; ð10Þ
be the number of the required additional points, and let
0 < s1 < � � � < sr < 1; ð11Þ
be r additional abscissae distinct from (4). Moreover, let us define the following silent stages [11],
wi � rðsiÞ; i ¼ 1; . . . ; r: ð12Þ
Consequently, the polynomial rðtÞ, which interpolates the couples ðci; yiÞ; i ¼ 0;1; . . . ; s, also interpolates the couples
ðsi;wiÞ; i ¼ 1; . . . ; r. That is, rðtÞ interpolates at kþ 1 points, even though it has only degree s. If we define the abscissae
ft0 < t1 < � � � < tkg ¼ fcig [ fsig ð13Þ
and dispose them according to a Lobatto distribution in ½0;1� in order to get a formula of degree 2k, we have that
erent choices of the abscissae will be the subject of future investigations.
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Z 1

0
r0ðtÞTrHðrðtÞÞdt ¼

Xk

i¼0

bir0ðtiÞTrHðrðtiÞÞ ð14Þ
and, consequently, the conservation condition becomes
Xk

i¼0

bir0ðtiÞTrHðrðtiÞÞ ¼ 0; ð15Þ
where, now,
bi ¼
Z 1

0

Yk

j¼0; j–i

t � tj

ti � tj
dt; i ¼ 0;1; . . . ; k: ð16Þ
The left-hand side of (15) is called ‘‘discrete line integral’’ because, as will be clear in the sequel, the choice of the path rðtÞ
is dictated by the numerical method by which we will solve problem (1) (see [11] for details).

With these premises, in Section 4, we devise such methods, able to fulfill (15), after having set some preliminary results in
Section 3. Section 5 contains the analysis of the energy-preserving methods. A few numerical tests are then reported in Sec-
tion 6 and, finally, some conclusions are given in Section 7. For sake of completeness, some properties of shifted Legendre
polynomials are listed in Appendix A.
3. Matrix form of collocation methods

In this section we deliberately do not care of the exactness of the discrete line integral, as stated by (14), and in fact we
choose k ¼ s (and hence ti ¼ ci; i ¼ 0; . . . ; s). We show that imposing the vanishing of the discrete line integral (condition
(15)) leads to the definition of the classical Lobatto IIIA methods. The reason why we consider this special situation is that
the technique that we are going to exploit is easier to be explained, but at the same time is straightforwardly generalizable to
the case k > s. As a by-product, we will gain more insight about the link between the new methods and the Lobatto IIIA class.
For example, we will deduce that Lobatto IIIA methods may be defined by means of a polynomial rðtÞ of degree lower than
that of the collocation polynomial uðtÞ (indeed, degrðtÞ ¼ deg uðtÞ � 1). For completeness, the link between u and r will be
elucidated in Section 3.3. To begin with, let us consider the following expansion of r0ðcÞ:
r0ðcÞ ¼
Xs�1

j¼0

cjPjðcÞ; ð17Þ
where the (vector) coefficients cj are to be determined. Then, (15) becomes
Xs�1

j¼0

cT
j

Xs

i¼0

biPjðciÞrHðrðciÞÞ ¼ 0; ð18Þ
which will clearly hold true, provided that the following set of orthogonality conditions are satisfied:
cj ¼ gj

Xs

i¼0

biPjðciÞJrHðrðciÞÞ; j ¼ 0; . . . ; s� 1; ð19Þ
where fgjg are suitable scaling factors. We now impose that the polynomial
rðcÞ ¼ y0 þ
Xs�1

j¼0

cj

Z c

0
PjðxÞdx ð20Þ
satisfies (5). We shall do this in Section 3.2, by using a matrix formulation of the methods, after setting some notation in
Section 3.1.
3.1. Notations and preliminary results

The shifted Legendre polynomials, in the interval ½0;1�, constitute a family of polynomials, fPngn�0, for which a number of
known properties, named P1–P7, are reported in Appendix A. Let us then set:
c ¼

c0

..

.

cs�1

0BB@
1CCA; e ¼

1
..
.

1

0B@
1CA 2 Rs; y ¼

y1

..

.

ys

0BB@
1CCA; ŷ ¼

y0

y

� �
: ð21Þ
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Moreover, with reference to the abscissae (4), let:
pj ¼

Pjðc1Þ

..

.

PjðcsÞ

0BB@
1CCA; p̂j ¼

Pjðc0Þ
pj

 !
; j ¼ 0; . . . ; s; ð22Þ

Pj ¼ p0 . . . pj

� �
2 Rs	jþ1; bP j ¼ p̂0 . . . p̂j

� �
2 Rsþ1	jþ1; ð23Þ

Ij ¼

R c1
0 PjðxÞdx

..

.R cs

0 PjðxÞdx

0BB@
1CCA; Îj ¼

R c0
0 PjðxÞdx

Ij

 !
�

0
Ij

� �
; j ¼ 0; . . . ; s: ð24Þ
Furthermore, we set:
I j ¼ I0 . . . Ijð Þ 2 Rs	jþ1; bI j ¼ Î0 . . . Îj

� �
2 Rsþ1	jþ1; ð25Þ

Dj ¼

1
3

. .
.

2j� 1

0BBBB@
1CCCCA 2 Rj	j; X ¼

b0

. .
.

bs

0BB@
1CCA ð26Þ
and
Gj ¼

1 �1

1 0 . .
.

1 . .
.

�1
. .

.
0
1

0BBBBBBBB@

1CCCCCCCCA
2 Rjþ1	j: ð27Þ
By virtue of P2 and P5, we deduce that
bPT
j�1XbP j ¼ D�1

j 0
h i

; j ¼ 1; . . . ; s ð28Þ
and
bI j�1 ¼
1
2
bP jGjD

�1
j ; I j�1 ¼

1
2
PjGjD

�1
j ; j ¼ 1;2; . . . : ð29Þ
The following result holds true.

Lemma 1. Matrices bP s ¼ p̂0 . . . p̂s
� �

2 Rsþ1	sþ1 and I s�1 2 Rs	s are nonsingular.
Proof. bP s is the transpose of the Gramian matrix defined by the linearly independent polynomials P0ðcÞ; . . . ; PsðcÞ at the dis-
tinct abscissae c0; . . . ; cs and is, therefore, nonsingular. The matrix I s�1 is nonsingular since, from (27)–(29),
bI s�1 ¼
0T

I s�1

 !
¼ 1

2
bP sGsD

�1
s 2 Rsþ1	s ð30Þ
with bP s and Ds nonsingular, and rankðGsÞ ¼ s. h
3.2. Matrix formulation

By imposing that the polynomial (20) satisfies (5), one obtains (see (24)–(29))
I s�1 
 I2mc ¼ 1
2
PsGsD

�1
s

� �

 I2mc ¼ y � e
 y0: ð31Þ
Consequently,
c ¼ 2DsðPsGsÞ�1 �e Isð Þ
h i


 I2m ŷ: ð32Þ
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On the other hand, the vector form of relations (19) reads
c ¼ CbP T
s�1X

� �

 I2m f̂; ð33Þ
where C ¼ diagðg0; . . . ;gs�1Þ 2 Rs	s and
f̂ ¼ f0 . . . fsð ÞT ; f i ¼ JrHðrðciÞÞ; i ¼ 0; . . . ; s: ð34Þ
Since C contains free parameters, we set
C ¼ Ds: ð35Þ
Comparing (32) and (33), we arrive at the following block method, where now h denotes, in general, the used stepsize,
A
 I2m ŷ ¼ hB
 I2m f̂ ð36Þ
with (see (29))
A ¼ �e Isð Þ; B ¼ 1
2
PsGs

bPT
s�1X

� �
� I s�1Ds

bPT
s�1X

� �
: ð37Þ
The following noticeable result holds true.

Theorem 1. Each row of the block method (36)–(37) defines a linear multistep formula of order sþ 1. The last row corresponds to
the Lobatto quadrature formula of order 2s.
Proof. For the first part of the proof, it suffices to show that the method is exact for polynomials of degree sþ 1. Clearly, it is
exact for polynomials of degree 0, due to the form of the matrix A. We shall then prove that AbI s ¼ BbP s, that is (see (24), (25),
and (37)), I s ¼ BbP s. By virtue of (37), (28), and considering that from property P7 one obtains Is ¼ 0, we have
BbP s ¼ I s�1Ds
bP T

s�1XbP s ¼ I s�1Ds D�1
s 0

h i
¼ I s�1 Is½ � ¼ I s;
which completes the first part of the proof. For the second part, one has to show, by setting as usual ei the ith unit vector, that
eT
s B ¼ b0 . . . bsð Þ;
the vector containing the coefficients of the quadrature formula. From (37), exploiting property P4 (see also (27)), we obtain
eT
s B ¼ 1

2
eT

sPsGs
bPT

s�1X ¼
1
2

1 . . . 1ð ÞGs
bPT

s�1X ¼ eT
1
bPT

s�1X ¼ 1 . . . 1ð ÞX ¼ b0 . . . bsð Þ: �
As an immediate consequence, the following result follows.
Corollary 1. The block method (36)–(37) collocates at the Lobatto abscissae (4) and has global order 2s.
Proof. The proof follows from known results about collocation methods (see, e.g., [1, Theorem II.1.5]). h
Remark 2. In conclusion, the method corresponding to the pencil ðA;BÞ, as defined by (37), is nothing but the Lobatto IIIA
method of order 2s.
3.3. Link between rðcÞ and the collocation polynomial uðcÞ

An important consequence of Theorem 1 and Corollary 1 is that the Lobatto IIIA method of order 2s may be also defined
by means of an underlying polynomial, namely rðcÞ, of degree s instead of sþ 1, as is the collocation polynomial associated
with the method (36).

The main aim of the present subsection is to elucidate the relation between these two polynomials. In what follows, we
deliberately ignore the result obtained in Theorem 1 and Corollary 1, so as to provide, among other things, an alternative
proof of part of the statements they report.

Let uðcÞ be the polynomial (6) (of degree sþ 1) that collocates problem (1) at the abscissae (4). The expansion of u0ðcÞ
along the shifted Legendre polynomials basis reads
u0ðcÞ ¼
Xs

j¼0

fjPjðcÞ: ð38Þ
Consequently, by setting
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ĝ ¼

g0

..

.

gs

0BB@
1CCA; gi ¼ JrHðuðciÞÞ; and f̂ �

f

fs

� �
�

f0

..

.

fs�1

0BB@
1CCA

fs

0BBBB@
1CCCCA;
one obtains that (6) may be recast in matrix notation as bP s 
 I2mf̂ ¼ ĝ, or
f̂ ¼ bP�1
s 
 I2m ĝ: ð39Þ
We get the expression of uðcÞ by integrating both sides of (38) on the interval ½0; c�:
uðcÞ ¼ y0 þ
Xs�1

j¼0

fj

Z c

0
PjðxÞdxþ fs

Z c

0
PsðxÞdx: ð40Þ
By virtue of property P7, we get
uðciÞ ¼ y0 þ
Xs�1

j¼0

fj

Z ci

0
PjðxÞdx; i ¼ 0; . . . ; s: ð41Þ
Setting zi ¼ uðciÞ; i ¼ 1; . . . ; s; z ¼ ðz1; . . . ; zsÞT , and ẑ ¼ ðy0; zTÞT , allows us to recast (41) in matrix form. This is done by
exploiting a similar argument used to get (31) starting from (20). By taking into account (37), one then obtains:
A
 I2mẑ ¼ z� e
 y0 ¼ I s�1 
 I2mf ¼ 1
2
PsGsD

�1
s

� �

 I2mf ¼ 1

2
PsGs D�1

s 0
h i� �


 I2mf̂: ð42Þ
Inserting (39) into (42), and exploiting (28), yields
A
 I2mẑ ¼ 1
2
PsGs D�1

s 0
h ibP�1

s 
 I2mĝ ¼ 1
2
PsGs

bPT
s�1X
 I2mĝ ¼ B
 I2mĝ:
Thus, the collocation problem (6) defines the very same method arising from the polynomial rðcÞ (see (36) and (37)) with
h ¼ 1. This implies that system (36) is a collocation method defined on the Lobatto abscissae ci; i ¼ 0; . . . ; s (therefore, a Lob-
atto IIIA method), and provides an alternative proof of Corollary 1. In particular, we deduce that
uðciÞ ¼ yi ¼ rðciÞ; i ¼ 0; . . . ; s:
It follows that (40) becomes
uðcÞ ¼ rðcÞ þ fs

Z c

0
PsðxÞdx ð43Þ
and, after differentiating,
u0ðcÞ ¼ r0ðcÞ þ fsPsðcÞ: ð44Þ
We can obtain the expression of the unknown fs by imposing a collocation condition at any of the abscissae ci. For example,
choosing c ¼ cs ¼ 1, yields
fs ¼ u0ð1Þ � r0ð1Þ ¼ f ðysÞ �
Xs�1

j¼0

cj ¼ f ðysÞ � eT 
 I2mc: ð45Þ
This latter expression can be slightly simplified by considering that:

(i) f ðysÞ ¼ ðeT 1ÞbP�1
s 
 I2m f̂, which comes from the fact that the system bPT

s x ¼ e
1

� �
has solution x ¼ esþ1 (the nonsingu-

larity of bP s being assured by Lemma 1);
(ii) from (32) and (36), (37), one has
c ¼ ðDs
bPT

s�1XÞ 
 I2m f̂ ¼ ðDs
bP T

s�1XbP s
bP�1

s Þ 
 I2m f̂ ¼ ðDsðD�1
s 0ÞbP�1

s Þ 
 I2m f̂ ¼ ðIs 0ÞbP�1
s 
 I2m f̂:
Thus, from (45) we get
fs ¼ ðeT 1Þ � ðeT 0Þ
� 	 bP�1

s 
 I2m f̂ ¼ eT
sþ1
bP�1

s 
 I2m f̂: ð46Þ
The remaining collocation conditions, u0ðciÞ ¼ JrHðuðciÞÞ; i ¼ 0; . . . ; s� 1, are clearly satisfied since the collocation polyno-
mial uðcÞ is uniquely identified by the sþ 2 linearly independent conditions in (6). Nonetheless, they can be easily checked
after observing that, from (43), (ii), and (46),
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f̂ ¼
c

fs

� �
¼ bP�1

s 
 I2m f̂:
Therefore, from (38), (39) and (43), one obtains,
û0 �

u0ðc0Þ
..
.

u0ðcsÞ

0BB@
1CCA ¼ bP s 
 I2mf ¼ bP s

bP�1
s 
 I2m f̂ ¼ f̂:
That is (see (34)), u0ðciÞ ¼ JrHðuðciÞÞ, i ¼ 0; . . . ; s.

4. Derivation of the energy-preserving methods

In Section 3, we have considered the particular case k ¼ s. In the general case, i.e., when k P s, condition (15) can be recast
as
Xs�1

j¼0

cT
j

Xk

i¼0

biPjðtiÞrHðrðtiÞÞ ¼ 0; ð47Þ
which will clearly hold true, provided that the following set of orthogonality conditions are satisfied:
cj ¼ gj

Xk

i¼0

biPjðtiÞJrHðrðtiÞÞ; j ¼ 0; . . . ; s� 1; ð48Þ
where fgjg are suitable scaling factors. According to (35), we choose them as gj ¼ 2jþ 1; j ¼ 0; . . . ; s� 1.3 The vector c (see
(21)) is then obtained by imposing that the polynomial rðcÞ in (20) satisfies the interpolation constrains (5) and (12). In so
doing, one obtains a block method characterized by the pencil ðA;BÞ, where the two k	 kþ 1 matrices A and B are defined
as follows. In order to simplify the notation, we shall use a ‘‘Matlab-like’’ notation: let inds 2 Rsþ1 and indr 2 Rr be the vectors
whose entries are the indexes, belonging to f1; . . . ; kþ 1g, of the main abscissae c0 < � � � < cs in (4) and of the silent ones
s1 < � � � < sr in (11), respectively, within the Lobatto abscissae t0 < � � � < tk, as defined in (13). Then, the orthogonality condi-
tions (48) will define the first s rows of A and B4 (compare with (37)):
Að1 : s; indsÞ ¼ �e Isð Þ; Bð1 : s; :Þ ¼ I s�1Ds
�PT �X

� �
; ð49Þ
where (see (25),(26) and (13))
�P ¼

P0ðt0Þ . . . Ps�1ðt0Þ
..
. ..

.

P0ðtkÞ . . . Ps�1ðtkÞ

0BB@
1CCA 2 Rkþ1	s ð50Þ
and (see (7))
�X ¼
b0

. .
.

bk

0BB@
1CCA 2 Rkþ1	kþ1: ð51Þ
On the other hand, the interpolation conditions for the silent stages (12) define the last r rows of the matrix A (the corre-
sponding rows of B are obviously zero):
Aðsþ 1 : k; indrÞ ¼ Ir;

Aðsþ 1 : k; indsÞ ¼ ��I r I�1
s�1 �e Isð Þ

� 	
� �e � eT

1;
ð52Þ
where Ir is the identity matrix of dimension r; �e ¼ ð1; . . . ;1ÞT 2 Rr; e1 is the first unit vector (of dimension sþ 1), and
�I r ¼

R s1
0 P0ðxÞdx . . .

R s1
0 Ps�1ðxÞdx

..

. ..
.R sr

0 P0ðxÞdx . . .
R sr

0 Ps�1ðxÞdx

0BB@
1CCA 2 Rr	s:
The following result generalizes Theorem 1 to the present setting (the proof being similar).
worth mentioning that, even though any choice for the fgjg is in principle allowed, choosing gj ¼ 2jþ 1 maximizes the order of the resulting method,
ng to what proved in Corollary 2.

further convention, the entries not explicitly set are assumed to be 0.
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Theorem 2. Each row of the block method (49)–(52) defines a linear multistep formula of order at least s. The s-th row
corresponds to the Lobatto quadrature formula of order 2k.
Definition 1. We call the method defined by the pencil ðA;BÞ in (49)–(52) a ‘‘Hamiltonian BVM with k steps and degree s’’,
hereafter HBVM (k; s).5
Remark 3. The structure of the nonlinear system associated with the HBVMðk; sÞ is better visualized by performing a per-
mutation of the stages that splits, into two block sub-vectors, the fundamental stages and the silent ones. More precisely, the
permuted vector of stages, say z, is required to be:
5 Ind
z ¼ yT
0; y

T
1; . . . ; yT

s|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
fundamental stages

;wT
1;w

T
2; . . . ;wT

r|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
silent stages

264
375

T

� ½yT
0; y

T ;wT �T :
This is accomplished by introducing the permutation matrices W 2 Rk	k and W1 2 Rkþ1	kþ1, such that
W

2
..
.

kþ 1

0B@
1CA ¼ indsð2 : sþ 1Þ

indr

� �
; W1

1
..
.

kþ 1

0B@
1CA ¼ inds

indr

� �
:

It is easy to realize that
W AWT
1 ¼

�e Is 0s	r

�a0 �A1 Ir

� �
; W BWT

1 ¼
b0 B1 B2

0 0r	s 0r	r

� �
;

where ½�a0; �A1� coincides with Aðsþ 1 : k; indsÞ in (52), while ½b0; B1; B2� matches the matrix Bð1 : s; :Þ in (49). The
HBVMðk; sÞ then takes the form:
�e Is 0s	r

�a0 �A1 Ir

� �

 I2m z ¼ h

b0 B1 B2

0 0r	s 0r	r

� �

 JrHðzÞ: ð53Þ
The presence of the null blocks in the lower part of W BWT
1 clearly suggests that the (generally nonlinear) system (53) of

(block) size k is actually equivalent to a system having (block) size s. Indeed, we can easily remove the silent stages,
w ¼ a0 
 y0 þ A1 
 I2m y
and obtain
y ¼ e
 y0 þ hb0 
 ðJrHðy0ÞÞ þ hB1 
 JrHðyÞ þ hB2 
 JrHða0 
 y0 þ A1 
 I2m yÞ: ð54Þ
(We refer to [19] for an alternative technique to reduce the dimension of system (53). The main idea, in this case, is to refor-
mulate the discrete problem in terms of the coefficients fcjg (see (48)) of the polynomial r, which are s, independently of k.)
Remark 4. As was shown in the previous section, when k ¼ s, the HBVM (s; s) coincides with the Lobatto IIIA method of
order 2s. More in general, for k P s, by summing up (49)–(52), we can cast HBVMðk; sÞ as a ðkþ 1Þ-stage Runge–Kutta
method with the following tableau:
ð55Þ
where
�I ¼

R t0
0 P0ðxÞdx . . .

R t0
0 Ps�1ðxÞdx

..

. ..
.R tk

0 P0ðxÞdx . . .
R tk

0 Ps�1ðxÞdx

0BB@
1CCA 2 Rkþ1	s:
We observe that the kþ 1	 kþ 1 matrix
C ¼ �IDs
�PT �X ð56Þ
eed, the pencil ðA;BÞ perfectly fits the framework of block BVMs (see, e.g., [13]).
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appearing in (55) has rank s, thus confirming that the computational cost per iteration depends on s, rather than on k (see
[14] for more details and a practical example of Butcher tableau concerning the method HBVM (6,2)).

By the way, we observe that, when s ¼ 1, HBVMðk;1Þ are nothing but the ‘‘s-stage trapezoidal methods’’, defined in [9],
based on the Lobatto abscissae. In such a case, the matrix C becomes
C ¼
t0

..

.

tk

0BB@
1CCA b0 . . . bkð Þ:
Similarly, for s ¼ 2 and k ¼ 4, HBVM (4,2) coincides with the fourth-order method presented in [11, Section 4.2], able to pre-
serve polynomial Hamiltonians of degree four.
5. Analysis of the methods

Concerning the order of convergence of HBVMðk; sÞ methods, the following result generalizes that of Corollary 1.

Corollary 2. For all k P s, the HBVM (k; s) (49)–(52) has order of convergence p ¼ 2s.
Proof. By virtue of Theorem 2, the corresponding Runge–Kutta method (55) satisfies the usual simplifying assumptions
Bð2kÞ and CðsÞ. If we are able to prove Dðs� 1Þ, from the classical result of Butcher (see, e.g., [15, Theorem 5.1]), it will follow
that the method has order p ¼ 2s. With reference to (55), the condition Dðs� 1Þ can be cast in matrix form, by introducing
the vectors e ¼ ð1; . . . ;1ÞT 2 Rs�1; �e ¼ ð1; . . . ;1ÞT 2 Rkþ1, and the matrices
Q ¼ diagð1; . . . ; s� 1Þ; T ¼ diagðt0; . . . ; tkÞ; V ¼ ðtj�1
i�1Þ 2 Rkþ1	s�1;
as
QVT �X �IDs
�PT �X

� �
¼ e�eT � VT T
� �

�X;
i.e.,
�PDs
�IT �XVQ ¼ �eeT � TV

� �
: ð57Þ
Since the quadrature is exact for polynomials of degree 2s� 1 6 2k� 1, one has
�IT �XVQ
� �

ij ¼
Xk

‘¼0

b‘

Z t‘

0
Pi�1ðxÞdx ðjtj�1

‘ Þ
 !

¼
Z 1

0

Z t

0
Pi�1ðxÞdxðjtj�1Þdt

� �
¼ di1 �

Z 1

0
Pi�1ðxÞxjdx

� �
;

i ¼ 1; . . . ; s; j ¼ 1; . . . ; s� 1;
where the last equality is obtained by integrating by parts, with di1 the Kronecker symbol. Consequently,
�PDs
�I T �XVQ

� �
ij ¼ 1�

Xs�1

‘¼0

g‘P‘ðtiÞ
Z 1

0
P‘ðxÞxjdx

 !
¼ ð1� tj

i�1Þ; i ¼ 1; . . . ; kþ 1; j ¼ 1; . . . ; s� 1;
that is, (57), where the last equality follows from the fact that
Xs�1

‘¼0

g‘P‘ðtÞ
Z 1

0
P‘ðxÞxjdx ¼ tj; j ¼ 1; . . . ; s� 1: �
An additional, remarkable property of such methods is gained, provided that the abscissae ft0; . . . ; tkg (13) are symmet-
rically distributed (as is the case of the Lobatto abscissae here considered). For this purpose, we need to introduce some nota-
tions and preliminary results. Let us define the matrix
En ¼

1
�

�
�

1

0BBBBBB@

1CCCCCCA 2 Rn	n; n ¼ 1;2; . . . ;
which, when applied to a vector of length n, reverses the order of its entries. We also set
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L ¼
�1 1

. .
. . .

.

�1 1

0B@
1CA 2 Rk	kþ1;

F ¼

ð�1Þ0

ð�1Þ1

. .
.

ð�1Þs�1

0BBBBB@

1CCCCCA 2 Rs	s:

ð58Þ
The following preliminary result holds true.

Lemma 2. If the abscissae (13) are symmetric, then matrix (56) satisfies:
EkLC Ekþ1 ¼ LC:
Proof. From the symmetry of the abscissae it easily follows that (see (16) and (51))
Ekþ1
�XEkþ1 ¼ �X:
From property P3, we have that (see (50))
�PT Ekþ1 ¼ F �PT :
Moreover, by considering that (see (4))
LI ¼

R t1
t0

P0ðxÞdx . . .
R t1

t0
Ps�1ðxÞdx

..

. ..
.R tk

tk�1
P0ðxÞdx . . .

R tk
tk�1

Ps�1ðxÞdx

0BBB@
1CCCA;
again from P3 we see that
EsLI ¼ LIF:
Finally, from (56) we obtain
EkLC Ekþ1 ¼ ðEkLIÞDsð�PT Ekþ1ÞðEkþ1
�XEkþ1Þ ¼ LIF DsF �PT �X ¼ LIDs

�PT �X ¼ LC: �
As a consequence, we have the following result.
Theorem 3. If the abscissae (13) are symmetric, then the method (49)–(52) (i.e., (55)) is symmetric, that is, it is self-adjoint.

Proof. Indeed, the discrete solution, ŷ, satisfies the equation (see (55),(56) and (58))
L
 I2m ŷ ¼ hLC 
 I2m f ðŷÞ:
Considering that EkLEkþ1 ¼ �L and, from Lemma 2, Ek LC Ekþ1 ¼ LC, one then obtains
L
 I2mðEkþ1 
 I2m ŷÞ ¼ �hLC 
 I2m Ekþ1 
 I2m f ðŷÞð Þ ¼ �hL C 
 I2m f Ekþ1 
 I2m ŷð Þ:
The thesis then follows by observing that the vector Ekþ1 
 I2m ŷ contains the time-reversed discrete solution. h

The next theorem summarizes the results about HBVMðk; sÞ.

Theorem 4 (Main Result). For all s ¼ 1;2; . . ., and k P s, the HBVM (k; s) method:
1. is symmetric;
2. has order of accuracy 2s;
3. is energy-preserving for polynomial Hamiltonians of degree not larger than 2k=s;
4. for general Cð2kþ1Þ Hamiltonians, the energy error at each integration step is Oðh2kþ1Þ, if h is the used stepsize.6
sequently, on any finite interval the global energy error is not larger than Oðh2kÞ.
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Fig. 1. Fourth-order Lobatto IIIA method, h ¼ 0:16, problem (59).
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Proof. Item 1 follows from Theorem 3, since the Lobatto abscissae ftig are symmetrically distributed. Item 2 follows from
Corollary 2. Item 3 follows from the fact that, for such polynomial Hamiltonians, the vanishing discrete line integral equals
the continuous line integral (see (14) and (15)). Finally, Item 4 follows from the fact that, by using arguments similar to those
used in Remark 1 (see (8)), the energy error per integration step equals the quadrature error of the Gauss–Lobatto formula of
order 2k. Indeed, for a general stepsize h, one would obtain, by taking into account (20)–(48):
7 Suc
Hðy1Þ � Hðy0Þ ¼ HðrðhÞÞ � Hðrð0ÞÞ ¼ h
Z 1

0
r0ðshÞTrHðrðshÞÞds ¼ h

Xk

i¼0

birHðrðtihÞÞTr0ðtihÞ þ RkðhÞ
 !

¼ h
Xk

i¼0

birHðrðtihÞÞT
Xs�1

j¼0

PjðtiÞcj þ hRkðhÞ ¼ h
Xs�1

j¼0

Xk

i¼0

biPjðtiÞrHðrðtihÞÞ
" #T

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ ½g�1

j
JTcj �

T

cj þ hRkðhÞ

¼ h
Xs�1

j¼0

g�1
j cT

j Jcj þ hRkðhÞ ¼ hRkðhÞ:
The thesis completes by recalling that, when choosing the kþ 1 Lobatto abscissae, then RkðhÞ ¼ Oðh2kÞ. h
Remark 5. Since HBVMðk; sÞ is a one-step method (indeed, a Runge–Kutta method), the result of Theorem 4 continues to
hold in the case where the stepsize h is dynamically changed at each integrations step.
6. Numerical tests

We here report a few numerical tests, in order to show the potentialities of HBVMðk; sÞ.
Let then consider, at first, the Hamiltonian problem characterized by the polynomial Hamiltonian (4.1) in [3],
Hðp; qÞ ¼ p3

3
� p

2
þ q6

30
þ q4

4
� q3

3
þ 1

6
ð59Þ
having degree m ¼ 6, starting at the initial point y0 � ðqð0Þ; pð0ÞÞ
T ¼ ð0;1ÞT . For such a problem, in [3] it has been experienced

a numerical drift in the discrete Hamiltonian, when using the fourth-order Lobatto IIIA method7 with stepsize h ¼ 0:16. This
is confirmed by the plot in Fig. 1, where a linear drift in the numerical Hamiltonian is clearly observable. On the other hand, by
h method coincides with the HBVM (2,2) above described.
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Fig. 2. Fourth-order HBVM (6,2) method, h ¼ 0:16, problem (59).

Table 1
Numerical order of convergence for the HBVM (6,2) method, problem (59).

h 0.32 0.16 0.08 0.04 0.02

Error 2:288 � 10�2 1:487 � 10�3 9:398 � 10�5 5:890 � 10�6 3:684 � 10�7

Order – 3.94 3.98 4.00 4.00
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Fig. 3. Fourth-order Lobatto IIIA method, h ¼ 0:05, problem (60).
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Table 2
Numerical order of convergence for the HBVM (4,2) method, problem (60).

h 1:6 � 10�2 8 � 10�3 4 � 10�3 2 � 10�3 10�3

Error 3:030 1:967 � 10�1 1:240 � 10�2 7:761 � 10�4 4:853 � 10�5

Order – 3.97 3.99 4.00 4.00
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Fig. 4. Fourth-order HBVM (4,2) method, h ¼ 0:05, problem (60).
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Fig. 5. Phase-space plot of the solution of problem (61) for 0 6 t 6 103 (the circle denotes the starting point of the trajectory).
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Fig. 6. Fourth-order Lobatto IIIA method, h ¼ 0:1, problem (61).

664 L. Brugnano et al. / Commun Nonlinear Sci Numer Simulat 20 (2015) 650–667
using the fourth-order HBVM (6,2) with the same stepsize, the drift disappears, as shown in Fig. 2, since such method exactly
preserves polynomial Hamiltonians of degree up to 6. Moreover, the order of convergence p ¼ 4 is (numerically) confirmed by
the results listed in Table 1, where the used stepsizes h, the maximum estimated error (obtained as the difference of two con-
secutive solutions), and the estimated order of convergence are listed.

The second test problem is the Fermi–Pasta–Ulam problem (see [1, Section I.5.1]), defined by the Hamiltonian
8 As
Hðp; qÞ ¼ 1
2

Xm

i¼1

p2
2i�1 þ p2

2i

� �
þx2

4

Xm

i¼1

q2i � q2i�1ð Þ2 þ
Xm

i¼0

q2iþ1 � q2i

� �4 ð60Þ
with q0 ¼ q2mþ1 ¼ 0; m ¼ 3; x ¼ 50, and starting vector
pi ¼ 0; qi ¼ ði� 1Þ=10; i ¼ 1; . . . ;6:
In such a case, the Hamiltonian function is a polynomial of degree 4, so that the fourth-order HBVM (4,2) method, which is
used with stepsize h ¼ 0:05, is able to exactly preserve the Hamiltonian, as confirmed by the plot in Fig. 4, whereas the
fourth-order Lobatto IIIA method provides the result plotted in Fig. 3. Moreover, in Table 2 we list corresponding results
as in Table 1, again confirming the fourth-order convergence.

In the previous examples, the Hamiltonian function was a polynomial. Nevertheless, as is easily argued from Theorem 4,
HBVM(k; s) are expected to produce a practical conservation of the energy when applied to systems defined by a non-poly-
nomial Hamiltonian function which are sufficiently differentiable. As an example, we consider the motion of a charged par-
ticle in a magnetic field with Biot–Savart potential.8 It is defined by the Hamiltonian
Hðx; y; z; _x; _y; _zÞ ¼ 1
2m

_x� a
x
q2

� �2

þ _y� a
y
q2

� �2

þ _zþ a logðqÞð Þ2
" #

ð61Þ
with q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; a ¼ eB0; m is the particle mass, e is its charge, and B0 is the magnetic field intensity. We have used the

values
m ¼ 1; e ¼ �1; B0 ¼ 1
with starting point
x ¼ 0:5; y ¼ 10; z ¼ 0; _x ¼ �0:1; _y ¼ �0:3; _z ¼ 0:
In Fig. 5, the trajectory of the particle in the interval ½0;103� is plotted in the phase space. As one can see, it is a helix that
wings downward. By using the fourth-order Lobatto IIIA method with stepsize h ¼ 0:1, a drift in the numerical Hamiltonian
can be again observed (see Fig. 6), so that the method does introduce a friction. When using the HBVM (4,2) method with the
an example, this kind of motion causes the well known phenomenon of aurora borealis.
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Fig. 7. Fourth-order HBVM (4,2) method, h ¼ 0:1, problem (61).
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Fig. 8. Fourth-order HBVM (6,2) method, h ¼ 0:1, problem (61).

Table 3
Numerical order of convergence for the HBVM (6,2) method, problem (61).

h 3:2 � 10�2 1:6 � 10�2 8 � 10�3 4 � 10�3 2 � 10�3

Error 3:944 � 10�6 2:635 � 10�7 1:729 � 10�8 1:094 � 10�9 6:838 � 10�11

Order – 3.90 3.93 3.98 4.00
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same stepsize, the drift disappears and the Hamiltonian turns out to be almost preserved (see Fig. 7). As expected, the result
improves if we increase k: the plot in Fig. 8 has been obtained by using the HBVM (6,2), from which one realizes that a prac-
tical preservation of the Hamiltonian is reached. Finally, the data listed in Table 3 confirm the fourth-order convergence of
the latter method.

7. Conclusions

In this paper a new class of numerical methods, able to preserve polynomial Hamiltonians, has been studied in detail.
From the analysis, it turns out that such methods can be regarded as a generalization of collocation Runge–Kutta Lobatto
IIIA methods. Nevertheless, the fact of being characterized by a matrix pencil, perfectly fits the framework of block BVMs,
so that we have named them Hamiltonian BVMs (HBVMs). A number of numerical tests prove their effectiveness in preserv-
ing the Hamiltonian function when evaluated along the numerical solution, as well as confirm the predicted order of con-
vergence. Possible different choices of the abscissae, as well as the actual efficient implementation of the methods, will
be the subject of future investigations.
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Appendix A. Some properties of shifted Legendre polynomials

The shifted Legendre polynomials fPngnP0, can be obtained recursively as follows:
P0ðxÞ � 1;
P1ðxÞ ¼ 2x� 1;
ðnþ 1ÞPnþ1ðxÞ ¼ ð2nþ 1Þð2x� 1ÞPnðxÞ � nPn�1ðxÞ; n ¼ 1;2; . . . :
A number of useful properties of such polynomials are here recalled: for their proof see any book on special functions (e.g.,
[16]).

P1. Lobatto quadrature: the Lobatto abscissae fcig (4), of the formula of degree 2s, are the zeros of the polynomial
ðx2 � xÞP0sðxÞ;
where P0sðxÞ denotes the derivative of PsðxÞ. The corresponding weights (7) are given by:
bi ¼
1

sðsþ 1ÞðPsðciÞÞ2
; i ¼ 0;1; . . . ; s;
which are, therefore, all positive.
P2. Orthogonality:
Z 1

0
PnðxÞPmðxÞdx ¼ 1

2nþ 1
dnm; n ¼ 0;1; . . . ;
where, as usual, dnm denotes the Kronecker delta.
P3. Symmetry:
Pnð1� xÞ ¼ ð�1ÞnPnðxÞ; n ¼ 0;1; . . .
P4. Symmetry at the end-points:
Pnð0Þ ¼ ð�1Þn; Pnð1Þ ¼ 1; n ¼ 0;1; . . .
P5. Integrals:
2
Z x

0
P0ðtÞdt ¼ 2x ¼ P1ðxÞ þ P0ðxÞ;

2ð2nþ 1Þ
Z x

0
PnðtÞdt ¼ Pnþ1ðxÞ � Pn�1ðxÞ; n ¼ 1;2; . . . :
P6. Shifted Legendre differential equations. The shifted Legendre polynomials satisfy the second order differential
equation:
d
dx
ðx2 � xÞP0nðxÞ
� 	

þ nðnþ 1ÞPnðxÞ ¼ 0; n ¼ 0;1; . . . :



L. Brugnano et al. / Commun Nonlinear Sci Numer Simulat 20 (2015) 650–667 667
P7. From P1 and P6, it follows that, if (4) are the Lobatto abscissae of the formula of order 2s (i.e., exact for polynomials of
degree 2s� 1), then
Z ci

0
PsðxÞdx ¼ 0; i ¼ 0;1; . . . ; s:
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