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Blended implementation of block implicit methods for ODEs✩
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Abstract

In this paper we further develop a new approach for naturally defining the nonlinear splittings needed for
the implementation of block implicit methods for ODEs, which has been considered by Brugnano [J. Comput.
Appl. Math. 116 (2000) 41] and by Brugnano and Trigiante [in: Recent Trends in Numerical Analysis, Nova
Science, New York, 2000, pp. 81–105]. The basic idea is that of defining the numerical method as the combination
(blending) of two suitable component methods. By carefully choosing such methods, it is shown that very efficient
implementations can be obtained. Moreover, some of them, characterized by a diagonal splitting, are well suited for
parallel computers. Some numerical tests comparing the performances of the proposed implementation with other
existing ones are also presented, in order to make evident the potential of the approach. 2001 IMACS. Published
by Elsevier Science B.V. All rights reserved.
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1. Introduction

The numerical solution of the ODE problem

y′ = f (t, y), t ∈ [t0, T ], y(t0)= y0 ∈ R
m, (1)

is usually carried out by formally executing the following three steps:

(1) the definition of a suitable partition of the integration interval[t0, T ],
(2) the construction of a discrete problem defined on such a discrete set,
(3) the solution of the discrete problem.
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Our aim now is to devise an efficient procedure for solving the discrete problems, so that we shall
hereafter confine ourselves to the uniform partition with stepsizeh:

tn = t0 + nh, n= 0, . . . ,N, Nh= T − t0,

whereN is a suitable multiple of an integerr to be defined in a while. Concerning the discrete problem,
we shall refer to that generated by ablock implicit method, namely a method generating a discrete
problem in the form

F(yn)≡A⊗ Imyn − hB ⊗ Imfn − ηn = 0, (2)

where the matricesA,B ∈ R
r×r define the method, the block vectors

yn = (yn+1, . . . , yn+r )T, fn = (fn+1, . . . , fn+r)T, fj = f (tj , yj ),

contain the discrete solution, and the vectorηn only depends on already known quantities. Instances of
methods falling in this class are Runge–Kutta methods, a number of General Linear methods [8–10] and,
more recently, block BVMs [3].

In the following we shall always assume the two matricesA andB to be nonsingular, so that the
underlying method is an implicit one. Consequently, an iterative procedure is usually carried out in order
to solve Eq. (2). The most straightforward one is the simplified Newton method which, however, requires
the factorization of therm× rm Jacobian matrix ofF .

A useful simplification, from the computational point of view, can be obtained when the two matrices
A andB are diagonalized by the same transformation matrix [7]: in such a case, in fact, only the solution
of (eventually complex)m×m linear systems is required. This kind of implementation is very popular
for Runge–Kutta methods and is, indeed, used in the code RADAU5 [10].

An alternative approach is obtained by defining a suitable splitting for Eq. (2). Roughly speaking,
instead of solving (2), one solves aninner-outeriteration in the form

A∗ ⊗ Imy(i+1)
n − hB∗ ⊗ Imf (i+1)

n

= (
A∗ −A

) ⊗ Imy(i)n − h
(
B∗ −B

) ⊗ Imf (i)n + ηn, i = 0,1, . . . , (3)

where the two matricesA∗ andB∗ have a much simpler structure thanA andB, respectively. This implies
that the nonlinear system to be solved at each iteration in (3) is in general much simpler than solving the
original problem (2). As an example, the matricesA∗ andB∗ can be chosen lower triangular with constant
entries on the main diagonal. In such a case, the simplified Newton iteration for solving (3) only requires
us to factor onem×m matrix. By definition, the procedure is convergent ify(i)n → yn, asi → ∞. Such
an approach, used for example in the code GAM [13], may be very competitive, provided that suitable
matricesA∗ andB∗ for defining the splitting can be obtained (see also [1,11,12]). Nevertheless, their
derivation may be, in general, very difficult, when satisfactory convergence properties are required. We
shall see that this problem can be much more easily handled via theblendingof methods, namely by
defining a numerical method as the combination of two methods. Concerning this point, we mention
that in the past years many attempts have been made to derive numerical methods for ODEs as the
combination of two methods. A well-known example is the popularθ -method. Additional examples are
provided by theblended linear multistep formulasof Skeel and Kong [17] and by theblended block
BVMs[2]. However, slightly different aims were pursued in doing this:

• in the case of theθ -method and of the blended linear multistep formulas, the only aim was that of
getting a method with better stability properties than the two component ones;
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• in the case of blended block BVMs, the above aim was coupled with that of getting an efficient
implementation of the resulting method.

Moreover, we want also to stress that the implementation issue has become focal for numerical
methods for ODEs: indeed, since a number of stable, high order methods are currently available, one
of the main reasons to use a method in place of another one is given by its computational cost. As matter
of fact, many methods in the class of both Runge–Kutta and General Linear methods have been defined
for reducing such cost (see, e.g., [5,15], for Runge–Kutta methods). For this reason, the implementation
issue has become paramount in [4], where the main idea has been that of blending different discrete
problems derived from the same method, rather than blending different methods. In such a case, we
shall speak about ablended implementationof the basic method. We now shall further investigate this
approach, by making evident its properties and potentialities.

The paper is organized as follows: in Section 2 we give a detailed presentation of the basic idea of
the proposed approach, together with its main features; then, in Section 3, we recall the main facts about
the methods to be combined. In Section 4 we examine some relevant properties needed for the actual
implementation of the methods and, finally, in Section 5 some numerical tests are reported along with
some concluding remarks.

2. Blending of block methods

In this paper we shall be concerned with the definition of numerical methods for which a suitably
splitting (3) is naturally defined. In order to present the methods, and to carry out the linear analysis of
convergence, we shall consider the application of the methods to the classical test equation

y′ = µy, y(t0)= y0, Re(µ) < 0, (4)

for which, by setting as usualq = hµ, the discrete problem (2) assumes the form (let us discard, for sake
of brevity, the indexn for the block vectors):

(A− qB)y = η. (5)

We observe that the solution of the previous equation is not affected by left-multiplication byA−1 or
B−1 of both sides of the equation,(

I − qA−1B
)
y =A−1η,

(
B−1A− qI

)
y = B−1η. (6)

The basic idea for the blended implementation of the method (5) relies on the fact that, by combining
equations in the form (6), the discrete solution does not change. In more detail, letA1 be a nonsingular
matrix with a “simple” structure. By multiplying on the left both sides of the first equation in (6), we then
obtain

(A1 − qB1)y = η1, (7)

where

B1 =A1A
−1B, η1 =A1A

−1η. (8)
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Similarly, by considering another nonsingular and “simple structured” matrixB2, by multiplying on the
left the second equation in (6) we obtain

(A2 − qB2)y = η2, (9)

where

A2 = B2B
−1A, η2 =B2B

−1η. (10)

Obviously, both Eqs. (7) and (9) do have the same solution as Eq. (5), since they are derived from the
same method.

In addition to this, let us define a suitableweighting functionθ(q) such that

θ(0)= I, θ(q)→O, asq → ∞, (11)

whereI andO are, respectively, ther× r identity and the zero matrix. Then, also the following equation,

M(q)y − η(q) ≡ (
A(q)− qB(q)

)
y − η(q)

≡ ((
θ(q)A1 + (

I − θ(q)
)
A2

) − q
(
θ(q)B1 + (

I − θ(q)
)
B2

))
y

− (
θ(q)η1 + (

I − θ(q)
)
η2

)
= 0, (12)

does have the same solution as (5): as matter of fact, the latter is obtained by “blending” the same Eq. (5)
written in the two different, though equivalent, forms (7) and (9).

The advantage of using such an approach consists in the fact that, from (11), one obtains that

• for q ≈ 0: M(q)≈A1 − qB1 ≈A1;
• for q → ∞: M(q)≈A2 − qB2 ≈ −qB2.

Consequently, instead of solving (12), one may think to solve iteratively

N(q)y(i+1) = (
N(q)−M(q)

)
y(i) + η(q), i = 0,1, . . . , (13)

where

N(q)=A1 − qB2. (14)

Obviously, the iteration (13) is a convergent one iff the spectral radius of the iteration matrixI −
N(q)−1M(q), sayρ(q), is smaller than 1. Following [11,12], the iteration is said to beA-convergent
if ρ(q) < 1 for all q ∈ C

−. If the matrix pencil (14) has no eigenvalues having negative real part, and the
functionθ(q) is analytic inC

−,A-convergence is equivalent to requiring that the maximum amplification
factor,

ρ∗ = max
x�0

ρ(ix), (15)

with i denoting the imaginary unit, is smaller than 1. We observe that, from (14), one obtains that

• ρ(0)= 0,
• ρ(∞) ≡ limq→∞ ρ(q)= 0,
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since, in both cases the iteration matrix is the zero matrix. Consequently, one has that, because of the
second property, the iteration (13) is well-suited for stiff problems, since thestiff amplification factor
ρ(∞) [11,12] is 0. Moreover, if the iteration matrix is well-defined in a neighborhood ofq = 0, the first
property implies that

ρ(q)≈ qρ̃, for q ≈ 0, (16)

whereρ̃ is thenonstiff amplification factor.
Concerning the choices of the two “simple structured” matricesA1 andB2, we shall here consider the

following choice, though different ones are possible,

A1 = I +LA, B2 =D +LB, (17)

whereLA andLB are strictly lower triangular matrices, andD is a diagonal matrix with positive entries.
With such assumptions, we have that the linear systems required by the iteration (13) are lower triangular
(block lower triangular when the method is applied to systems of equations). Moreover, in the case of
systems, one only needs to factorize matrices having the same size of the continuous problem, and the
number of matrices to be actually factored equals the number of distinct diagonal entries of the matrixD.

Finally, in order to keep low the computational cost, the weight functionθ(q) is defined as

θ(q)= (I − qD)−1, (18)

so that the properties (11) are satisfied, the iteration (13) is well-defined for allq ∈ C
−, and, in the case

of systems, no additional factorizations are required, besides those needed forN(q).
With such assumptions, the only key-points which we need to clarify are the following ones:

(1) the choice of appropriate methods (5),
(2) the choice of the corresponding “simple structured” matricesA1 andB2 in (17) (the remaining

matricesB1 andA2 being defined by (8) and (10), respectively).

The first point will be discussed in the next section, whereas the second one will be addressed in Section 4.

3. Choice of the component methods

Let now introduce the methods that we shall implement in blended form, according to what has been
said in the previous section. Even though different choices can be made, we shall here consider methods
which have been already introduced in the past years by Watts and Shampine [19]. Such methods are
block methods characterized by the fact that each one of ther equations which define the method
itself corresponds to a linear multistep formula. Even though the methods could be also derived in the
framework of Runge–Kutta methods (by means of the “V -transform” [5,6,10]) we prefer to use the same
framework originally used in [19] (see also [4]).

In more detail, let define the followingr × (r + 1) matrices,

Â= [a |A] ≡


α
(1)
0 α

(1)
1 . . . α(1)r

...
...

...

α
(r)

0 α
(r)

1 . . . α(r)r


 , B̂ = [b | B] ≡



β
(1)
0 β

(1)
1 . . . β(1)r

...
...

...

β
(r)

0 β
(r)

1 . . . β(r)r


 , (19)
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where the coefficients on theith row of the two matrices define a suitabler-step LMF. Assuming for
simplicity that the firstr points are to be approximated, the further relation with (5) is that

η = −(a − qb)y0.

It is not difficult to prove the following result.

Theorem 1. Let all LMFs defining(19) have anO(hp+1) truncation error. Then

Aqi = iBqi−1, i = 2, . . . , p,

whereqi = (1i , . . . , ri)T, and, moreover

a = −Aq0, b =Aq1 −Bq0.

Then the previous result tells us that, provided all LMFs in (19) are consistent, we can concentrate
our attention on the matricesA andB alone. Moreover, since we assume both of them to be nonsingular,
one obtains that the method is uniquely defined by the matrixC = A−1B. It can be shown that we can
uniquely define such a matrix by imposingp = r , and by fixing its characteristic polynomial,

d(z)=
r∑

i=0

diz
i, dr = 1. (20)

As matter of fact, one obtains that (see [4])

C =QG−1FGQ−1,

whereQ= (q1, . . . ,qr), G= diag(1!, . . . , r!), and

F =




−d0

1 −d1
. . .

...

1 −dr−1


 .

Concerning the choice of the characteristic polynomial (20), a necessary requirement for having a
stable method, is to have its roots with positive real part. In order to meet this requirement, and to ensure
good stability properties for the corresponding method, we choose the polynomial (20) as the reciprocal,
and scaled, polynomial at the denominator of the(ν, r) Padé approximation to the exponential,

zrd
(
z−1

) =
r∑

i=0

(ν + r − i)!r!
(ν + r)!i!(r − i)! (−rz)

i.

In such a case, in fact, one obtainsA-stable methods for allr andν = r − 2, r − 1, r , which are also
L-stable forν < r [19] (see also [18]). Moreover, for allr � 3, it can be shown that the local error of the
methods has the firstr − 1 entries which are O(hr+1), and ther th one which is (for general nonlinear
problems)

• O(hr+3), whenr is even,
• O(hr+2), whenr is odd,

in which case, the global order of convergence of the corresponding method is, respectively,r + 2 or
r + 1 [4].
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In the present case, we look forL-stable methods and, consequently, we need to choose appropriate
values for the couples(ν, r), ν ∈ {r − 2, r − 1}. In order to make the proper choice, we observe that the
last entry of the vectory in (5) is essentially given by the(ν, r) Padé approximation to the exponential.
We know that such an approximation is exact atq = 0 and asq → ∞ (due to theL-stability of the
methods). In addition to this, we also require that, forµ< 0 (see (4)), the discrete solution has the same
sign as the continuous one (which is the sign ofy0), whatever the stepsizeh used. By considering that
the Padé approximation, forν = r − 2, r − 1, is analytic inC

−, with no real and negative zeros when

• r is even andν = r − 2,
• r is odd andν = r − 1,

we shall hereafter consider the methods obtained in correspondence of the(2,3), (2,4), (4,6), (6,8),
(8,10), and (10,12) Padé approximations to the exponential (having orders 4, 6, 8, 10, 12 and
14, respectively). This in view of a variable order, variable stepsize implementation of the methods
themselves.

4. Properties and implementation details

In this section we shall study in more detail particular choices of appropriate matricesA1 andB2,
as defined in (17). As we have said, this uniquely defines the whole blended implementation of the
considered method, since the weight functionθ and the remaining matricesB1 and A2 are defined
according to (18), (8) and (10), respectively. We start considering the simpler case where

LA =LB =O, D = γ I, γ > 0, (21)

since in such a case a complete spectral analysis can be carried out. In fact, one has that

A1 = I, A2 = γB−1
1 , B2 = γ I, θ(q)= (1− qγ )−1I, (22)

which allow us to easily derive the following result.

Theorem 2. Assume that for the blended method(12) the previous equalities(21) hold true. Then, the
eigenvalues of the iteration matrix corresponding to(13) and(14) are given by

q(λ− γ )2

λ(1− qγ )2
, λ ∈ σ (B1). (23)

Proof. Since (21) are satisfied, then also (22) do. Consequently, by taking into account (13) and (14),
one obtains that the iteration matrix is given by

I −N(q)−1M(q) = I − (1− qγ )−2
(
I − qB1 − qγ 2

(
B−1

1 − qI
))

= (1− qγ )−2((1− qγ )2I − I + qB1 + qγ 2(B−1
1 − qI

))
= (1− qγ )−2B−1

1

((
q2γ 2 − 2qγ

)
B1 + qB2

1 + qγ 2(I − qB1)
)

= q(1− qγ )−2B−1
1

(
B2

1 − 2γB1 + γ 2I
) = q(1− qγ )−2B−1

1 (B1 − γ I)2,

from which the thesis follows. ✷
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The above result allows us to easily characterize the value of the two parametersρ∗ andρ̃ as defined
in (15) and (16), respectively. In fact, by expanding (23) atq = 0, one readily obtains that

ρ̃ = max
λ∈σ(B1)

|λ− γ |2
|λ| . (24)

Similarly, for q = ix, one has that the modulus of (23) is given by

x|λ− γ |2
|λ|(1+ x2γ 2)

, x � 0,

which is strictly monotone increasing in[0, γ −1), and decreasing in(γ −1,∞). As a consequence, one
readily obtains that, atx = γ −1,

ρ∗ = max
λ∈σ(B1)

|λ− γ |2
2γ |λ| . (25)

The above relations allow the derivation of simple criteria for choosing the parameterγ : indeed one may
think to choose it in order to minimize either (24), or (25), or a combination of the two. Concerning
the minimization of (24) and (25), the following result may be used. Before stating it, let us order the
eigenvalues of the matrixB1, so that

π

2
> arg(λ1)� arg(λ2)� · · · � arg(λr) >−π

2
.

Since the matrix is real, this means that we can only consider the first- = �r/2� eigenvalues, in the
sequel. Let now assume that the moduli of the eigenvalues are strictly decreasing, that is,

|λ1|< |λ2|< · · ·< |λ-|.
By settingλj = ϕjeiζj , j = 1, . . . , -, then the previous two equations can be written as

0< ϕ1 < · · ·< ϕ-,
π

2
> ζ1 � · · · � ζ- � 0. (26)

We can now state the following preliminary result.

Lemma 3. Assume that(21) holds true and the eigenvalues of the matrixB1 satisfy(26). Then, for all
values ofγ greater than or equal to

γ̂ ≡ max
j∈{1,...,-}

Ψj +
√
Ψ 2
j + ϕ1ϕj , Ψj = ϕ1ϕj (cosζ1 − cosζj )

ϕj − ϕ1
, (27)

one has that
|λ1 − γ |2

|λ1| = max
j∈{1,...,-}

|λj − γ |2
|λj | . (28)

Proof. Indeed, in order for (28) to be satisfied, for allj > 1 one must have

|λj − γ |2
|λj | � |λ1 − γ |2

|λ1| .

By multiplying both sides by|λ1λj |, and taking into account (26), one then obtains the following second
order inequality,

γ 2(ϕj − ϕ1)− 2γΨj + ϕ1ϕj (ϕ1 − ϕj)� 0,
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which, considering thatΨj � 0 and the discriminant of the equation is positive, is satisfied for all

γ �Ψj +
√
Ψ 2
j + ϕ1ϕj . ✷

The previous lemma allows us to state the desired results.

Theorem 4. Assume the hypotheses of Lemma3 to be satisfied and, moreover, assume that

ϕ1 > γ̂ , (29)

whereγ̂ is defined according to(27). It follows that the minimum value ofρ∗ is obtained atγ = ϕ1, and
it is given byρ∗ = 1− cosζ1. If, in addition,

ϕ1 cosζ1 > γ̂ , (30)

then the minimum value of̃ρ is obtained atγ = ϕ1 cosζ1, and it is given byρ̃ = ϕ1 sin2 ζ1.

Proof. Let us first consider the first point. By taking into account (25), we want to solve the problem

min
γ>0

max
j∈{1,...,-}

|ϕjeiζj − γ |2
2γ ϕj

.

If such a minimum would be obtained at a value ofγ � γ̂ (see (27)) then, from Lemma 3, the previous
problem would reduce to the following simpler one,

min
γ>0

ϕ2
1 + γ 2 − 2ϕ1γ cosζ1

2γ ϕ1
= min

γ>0

1

2

(
ϕ1

γ
+ γ

ϕ1
− 2cosζ1

)
≡ min

γ>0
g∗(γ ).

Indeed, by considering that the only stationary point ofg∗ is given by dg∗
dγ (ϕ1) = 0 and, moreover,

d2g∗
(dγ )2

(ϕ1) > 0, one then obtains that, from (29), atγ = ϕ1, ρ∗ = g∗(ϕ1)≡ 1− cosζ1.
Similarly, for the second point we obtain that

min
γ>0

max
j∈{1,...,-}

|ϕjeiζj − γ |2
ϕj

= min
γ>0

ϕ2
1 + γ 2 − 2ϕ1γ cosζ1

ϕ1
= min

γ>0

(
ϕ1 + γ 2

ϕ1
− 2γ cosζ1

)
≡ min

γ>0
g̃(γ ),

provided that the minimum is obtained at a value ofγ � γ̂ . Indeed, by considering that the only stationary

point of g̃ is given by dg̃
dγ (ϕ1 cosζ1)= 0 and, moreover,d

2g̃

(dγ )2(ϕ1 cosζ1) > 0, one then obtains that, from

(30), atγ = ϕ1 cosζ1, ρ̃ = g̃(ϕ1 cosζ1)≡ ϕ1 sin2 ζ1. ✷
Remark 5. We observe that the above relation (27)–(29) can be also written as

ϕj

ϕ1
+ ϕ1

ϕj
< 2(1+ cosζj − cosζ1), j = 2, . . . , -. (31)

By taking into account (26), the previous inequality implies that all the eigenvalues of the matrixB1 are
contained in a suitably small annulus, whose internal radius isϕ1. A similar conclusion can be obtained
from (27)–(30),

ϕj

ϕ1
+ ϕ1

ϕj
cos2 ζ1 < 1+ cos2 ζ1 + 2cosζ1(cosζj − cosζ1), j = 2, . . . , -, (32)

which, however, is more restrictive than (31).
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It turns out that both results in Theorem 4 apply to the case of the methods considered at the end of
Section 3: indeed, according to what was stated in Remark 5, it can be shown that all the eigenvalues of
the matrixB1 are contained in a suitably small annulus (see [4,16]), and (32) (and then (31)) turns out to
be satisfied. In Table 1 we list the obtained values of the parametersρ̃ andρ∗, with the choiceγ = ϕ1. We
omit to list the case corresponding to the choiceγ = ϕ1 cosζ1, since the latter choice does not guarantee
theA-convergence of the corresponding iteration (13) and (14).

When the blended implementation does not satisfy (22), then the above analysis cannot be applied,
since the involved matrices no more commute. In such a case, one must resort to computational
techniques in order to minimize either one of the two parameters (15) and (16). In such a case, it is
useful to know that̃ρ is given by the spectral radius of the following matrix,

R =A−1
1

(
B1 −B2 +D(A2 −A1)

)
. (33)

Concerning alternative choices for the matricesA1 andB2, we have considered the case where

A1 =




1
−1 1

. . .
. . .

−1 1


 , B2 = γ I, (34)

with A2 = γB−1
1 A1, andθ(q) = (1 − qγ )−1I . In Table 2 we list the obtained results when choosingγ

so as to minimizeρ∗ and
√
ρ̃‖R‖2, respectively, whereR is the matrix defined in (33). As told before, in

such a case the parameters have been computed numerically. We observe that the choice of minimizing√
ρ̃‖R‖2 makes the method corresponding tor = 12 notA-convergent (thoughA(α)-convergent [12]

with α ≈ π/2). Hereafter, we shall refer to the schemes corresponding to the above three choices as the

Table 1
Values of the parametersρ∗ and ρ̃ for the
methods satisfying (22)

r Padé γ ρ∗ ρ̃

3 (2,3) 0.7387 0.3398 0.5021
4 (2,4) 0.8482 0.5291 0.8975
6 (4,6) 0.7285 0.6299 0.9177
8 (6,8) 0.6745 0.6885 0.9288

10 (8,10) 0.6433 0.7276 0.9361
12 (10,12) 0.6227 0.7560 0.9415

Table 2
Values of the parametersρ∗ andρ̃ for the methods satisfying (34)

r Padé γ ρ∗ ρ̃ γ ρ∗ ρ̃

3 (2,3) 0.6884 0.2672 0.3366 0.5802 0.2998 0.2692
4 (2,4) 0.8351 0.4045 0.4513 0.5960 0.5427 0.3833
6 (4,6) 0.7677 0.5184 0.4747 0.5165 0.6687 0.4310
8 (6,8) 0.6151 0.5428 0.6032 0.4472 0.7858 0.4389

10 (8,10) 0.6046 0.6475 0.6884 0.4088 0.9017 0.4408
12 (10,12) 0.5819 0.7400 0.7462 0.3866 1.0004 0.4583
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type1, 2, and 3schemes, respectively. A comparative analysis of Tables 1 and 2 puts into evidence the
type 2 schemes as the ones with the best features, from the point of view of the amplification factors.
Nevertheless, the diagonal splitting characterizing the type 1 schemes makes them very appealing for an
implementation on parallel computers.

4.1. Order variation

We now briefly examine some details concerning the mesh and the order variation for the methods
considered above. First of all, we observe that the iteration (13) and (14) becomes, for problem (1)
(again, for simplicity let us consider the first application of the method),

y(i+1) = y(i) − (A1 ⊗ Im − hB2 ⊗ J )−1
(
θ
(
(A1 −A2)⊗ Imy(i) − h(B1 −B2)⊗ Imf (i)

)
+A2 ⊗ Imy(i) − hB2 ⊗ Imf (i) + η

)
, i = 1,2, . . . , (35)

wheref (i) = (f
(i)

1 , . . . , f (i)
r )T, J is the Jacobian matrix off at (t0, y0), the vectorη only depends on

the initial condition, and (assuming to deal with the type 1, 2 or 3 schemes previously introduced)
θ = I ⊗ (Im − hγ J )−1. Consequently, ifν iterations are performed to obtain convergence, the overall
computational cost is approximately given by:

• the factorization of them×m matrixΩ = Im − hγ J ,
• rν function evaluations, and
• 2rν system solvings with the factors of the matrixΩ .

Considering that the last point is the most time consuming section, for small-medium size problems, we
now shall briefly sketch a variable order strategy with the aim of reducing this cost. As usual, during
the ν iterations (35), one is able to get an estimate, sayρ, of the spectral radius of the iteration matrix,
which will depend on the stepsizeh and on the eigenvalues of the matrixJ . Assuming that the stepsize
hnew is to be used in the next step, one then obtains that the spectral radius of the new iteration matrix is
approximately given by (see (16))

ρnew= ρ
hnew

h
.

If the same stopping criterion has to be satisfied, then approximately

νnew= ν
logρ

logρnew

iterations will be required. Now, assume that we are able to know the stepsize, sayhup, to be used by the
next higher order method, among those listed at the end of Section 3. Consequently, the spectral radius of
the corresponding iteration matrix, and the number of iterations to get convergence, can be respectively
estimated as

ρup = ρ
hupρ̃up

hρ̃
, νup = νnew

logρnew

logρup
,

whereρ̃ and ρ̃up are the (known) nonstiff amplification factors (see (16)) of the current method and of
the higher order one.
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If we normalize the cost by dividing the number of required linear systems by the covered integration
interval, we have that the normalized cost for the current method is given by

2r(νnew+ 1)

rhnew
= 2(νnew+ 1)

hnew
. (36)

Consequently, the higher order method has to be preferred when

νnew+ 1

hnew
>
νup + 1

hup
, (37)

which can be readily computed, provided that estimates forhnew andhup are available. Concerning this
point, let us consider the local error of the currently used method, saye = (e1, . . . , er)

T: from Section 3,
its entries behave as O(hr+1), with the only exception of the last entry, which is O(hr+2), for r = 3, and
O(hr+3), for r = 4,6,8,10,12. Therefore, if we use the following norm for measuring the error,

max
i=1,...,r

‖ei‖2√
m

,

thenm−1/2‖er‖2 provides an estimate of the error for the closest higher order method. Consequently,
when estimating the local error to predict the new stepsizehnew, we are also able to predict,at no extra
cost, the stepsizehup for the higher order method.

In such a way, we have a simple criterion to decide whether to increase the order of the method.
Conversely, the order is reduced when the iteration (35) fails to converge, or when the estimated value

Fig. 1. Variable versus fixed order implementation.
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of the spectral radius of the iteration matrix,ρ, is too large. We also mention that the local error can be
estimated, by using deferred correction (see, e.g., [3]), at the cost of one iteration. This extra iteration is
the reason for the “+1” increment at the numerators in (36) and (37) (full details will be provided in a
future paper).

In order to put into evidence the effectiveness of the presented variable order strategy, in Fig. 1 we plot
the work precision diagram, with the number of required system solvings with the factors of the matrix
Ω , for the type 2 schemes applied to the Robertson problem. It can be seen that the plot of the variable
order method (solid line and squares) is almost everywhere below those of the fixed order ones, with
order 4 (pluses), 6 (stars), 8 (rhombuses) and 10 (triangles).

5. Numerical tests

We report here a few numerical tests to compare the proposed blended schemes (implemented in
Matlab) with one of the best codes currently available, i.e., the Fortran code GAM [13]. This is because
the methods used in such codes are implemented by using a nonlinear splitting, still requiring one
m × m factorization per step, and an equal number of system solvings and function evaluations per
inner iteration, depending on the (variable) order of the method used. In this respect, we recall that the
blended schemes require twice the number of system solvings per inner iteration, with respect to the
function evaluations.

In Fig. 2 are the results obtained for the Van der Pol problem, where we plot the work precision
diagrams, with the needed linear system solvings and the function evaluations, for the GAM code (solid
line and pluses), the type 1 schemes (dashed line and downward triangles), the type 2 schemes (dash-
dotted line and rhombuses), and the type 3 ones (dotted line and squares), as defined in Section 4. The
symbols are the same for Figs. 3 and 4, where we plot the results for the Robertson problem and the
Ring Modulator problem (the latter problem from the CWI testset [14]). For the type 1 schemes we
recall that the splitting is diagonal. This implies that the method with blocksizer can be implemented
on r parallel processors with a perfect degree of parallelism, for what concerns the system solvings and
the function evaluations. For this reason, for the type 1 schemes we also plot the parallel cost (dashed
lines and upward triangles), obtained by considering that the parallel complexity per iteration is 2 system
solvings and 1 function evaluation.

We observe that all methods require a comparable number of linear system solvings. On the other
hand, the blended schemes require approximately half the number of function evaluations as the GAM
code. Moreover, we stress that the type 1 schemes, characterized by a diagonal splitting, do have good
potentialities for a parallel implementation.

5.1. Conclusions

In this paper we have studied the solution of the discrete problems generated by the application of
block implicit methods for ODEs. By suitablyblendingtwo discrete problems corresponding to the same
method, it is indeed possible to naturally define a corresponding nonlinear splitting. By properly choosing
the methods, and the discrete problems to combine, it has been shown that very efficient splittings can
be obtained. In particular, a diagonal splitting has been defined, which seems to be promising for the
implementation on parallel computers.
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Fig. 2. Results for the Van der Pol problem.



L. Brugnano, C. Magherini / Applied Numerical Mathematics 42 (2002) 29–45 43

Fig. 3. Results for the Robertson problem.
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Fig. 4. Results for the Ring Modulator problem.
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