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Abstract

In this paper we further develop a new approach for naturally defining the nonlinear splittings needed for
the implementation of block implicit methods for ODEs, which has been considered by Brugnano [J. Comput.
Appl. Math. 116 (2000) 41] and by Brugnano and Trigiante [in: Recent Trends in Numerical Analysis, Nova
Science, New York, 2000, pp. 81-105]. The basic idea is that of defining the numerical method as the combination
(blending of two suitable component methods. By carefully choosing such methods, it is shown that very efficient
implementations can be obtained. Moreover, some of them, characterized by a diagonal splitting, are well suited for
parallel computers. Some numerical tests comparing the performances of the proposed implementation with other
existing ones are also presented, in order to make evident the potential of the appr2@@h.IMACS. Published
by Elsevier Science B.V. All rights reserved.
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1. Introduction

The numerical solution of the ODE problem

Y=f@ty), telt,Tl,  y(to)=y eR", (1)

is usually carried out by formally executing the following three steps:

(1) the definition of a suitable partition of the integration interval 7’1,
(2) the construction of a discrete problem defined on such a discrete set,
(3) the solution of the discrete problem.
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Our aim now is to devise an efficient procedure for solving the discrete problems, so that we shall
hereafter confine ourselves to the uniform partition with stepsize

t,=to+nh, n=0,...,N, Nh=T — tg,

whereN is a suitable multiple of an integerto be defined in a while. Concerning the discrete problem,
we shall refer to that generated bybkock implicit method namely a method generating a discrete
problem in the form

F(yn)EA®Imyn _hB®Imfn — N, :O’ (2)
where the matriced, B € R™*" define the method, the block vectors

Yn =()’n+1,---,yn+r)T, fn :(fn+lv---»fn+r)Ta szf(tj’ yj)’

contain the discrete solution, and the veajpronly depends on already known quantities. Instances of
methods falling in this class are Runge—Kutta methods, a number of General Linear methods [8—-10] and,
more recently, block BVMs [3].

In the following we shall always assume the two matrigeand B to be nonsingular, so that the
underlying method is an implicit one. Consequently, an iterative procedure is usually carried out in order
to solve Eq. (2). The most straightforward one is the simplified Newton method which, however, requires
the factorization of them x rm Jacobian matrix of .

A useful simplification, from the computational point of view, can be obtained when the two matrices
A andB are diagonalized by the same transformation matrix [7]: in such a case, in fact, only the solution
of (eventually complexjz x m linear systems is required. This kind of implementation is very popular
for Runge—Kutta methods and is, indeed, used in the code RADAUS5 [10].

An alternative approach is obtained by defining a suitable splitting for Eq. (2). Roughly speaking,
instead of solving (2), one solves mmer-outeriteration in the form

A* ® Imy’(’li+l) _ hB* ® Imf’(,li+l)
=(A*—A)® LYY —h(B*—B)QL,(f"+m, i=01..., ®3)

where the two matriced* and B* have a much simpler structure tharand B, respectively. This implies

that the nonlinear system to be solved at each iteration in (3) is in general much simpler than solving the
original problem (2). As an example, the matrieesandB* can be chosen lower triangular with constant
entries on the main diagonal. In such a case, the simplified Newton iteration for solving (3) only requires
us to factor onen x m matrix. By definition, the procedure is convergenyf — vy,, asi — oo. Such

an approach, used for example in the code GAM [13], may be very competitive, provided that suitable
matricesA* and B* for defining the splitting can be obtained (see also [1,11,12]). Nevertheless, their
derivation may be, in general, very difficult, when satisfactory convergence properties are required. We
shall see that this problem can be much more easily handled vialehding of methods, namely by
defining a numerical method as the combination of two methods. Concerning this point, we mention
that in the past years many attempts have been made to derive numerical methods for ODEs as the
combination of two methods. A well-known example is the pop@lanethod. Additional examples are
provided by theblended linear multistep formulasf Skeel and Kong [17] and by thelended block
BVMsJ[2]. However, slightly different aims were pursued in doing this:

e in the case of th@-method and of the blended linear multistep formulas, the only aim was that of
getting a method with better stability properties than the two component ones;
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e in the case of blended block BVMs, the above aim was coupled with that of getting an efficient
implementation of the resulting method.

Moreover, we want also to stress that the implementation issue has become focal for numerical
methods for ODESs: indeed, since a number of stable, high order methods are currently available, one
of the main reasons to use a method in place of another one is given by its computational cost. As matter
of fact, many methods in the class of both Runge—Kutta and General Linear methods have been defined
for reducing such cost (see, e.g., [5,15], for Runge—Kutta methods). For this reason, the implementation
issue has become paramount in [4], where the main idea has been that of blending different discrete
problems derived from the same method, rather than blending different methods. In such a case, we
shall speak about blended implementatioaf the basic method. We now shall further investigate this
approach, by making evident its properties and potentialities.

The paper is organized as follows: in Section 2 we give a detailed presentation of the basic idea of
the proposed approach, together with its main features; then, in Section 3, we recall the main facts about
the methods to be combined. In Section 4 we examine some relevant properties needed for the actua
implementation of the methods and, finally, in Section 5 some numerical tests are reported along with
some concluding remarks.

2. Blending of block methods

In this paper we shall be concerned with the definition of numerical methods for which a suitably
splitting (3) is naturally defined. In order to present the methods, and to carry out the linear analysis of
convergence, we shall consider the application of the methods to the classical test equation

V' =y, y(to) = Yo. Re(n) <0, (4)

for which, by setting as usual= iy, the discrete problem (2) assumes the form (let us discard, for sake
of brevity, the index: for the block vectors):

(A—gB)y=1. ®)

We observe that the solution of the previous equation is not affected by left-multiplicatidmbgr
B! of both sides of the equation,

(I-qA'B)y=A""y, (B*A—ql)y=B"y. (6)

The basic idea for the blended implementation of the method (5) relies on the fact that, by combining
equations in the form (6), the discrete solution does not change. In more detai, beta nonsingular
matrix with a “simple” structure. By multiplying on the left both sides of the first equation in (6), we then
obtain

(A1 —qBpy=n4, (7)
where

By=A1A7'B, N =A1A7"n. (8)
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Similarly, by considering another nonsingular and “simple structured” matrjoy multiplying on the
left the second equation in (6) we obtain

(A2 —gB2)y =15, 9
where
A, = B,B7 A, n,= BB~y (10)

Obviously, both Egs. (7) and (9) do have the same solution as Eq. (5), since they are derived from the
same method.
In addition to this, let us define a suitalleighting functior (¢) such that

00 =1, 0(q) — O, asq— oo, (11)
wherel andO are, respectively, thex r identity and the zero matrix. Then, also the following equation,
M(q)y —n(q) = (A(g) — qB(q))y — n(q)
= ((0(@ A1+ (I —0(9))A2) —q(6(q)BL+ (I —6(9))B2))y

—O@n1+ (I —6(q))ny)
=0, (12)

does have the same solution as (5): as matter of fact, the latter is obtained by “blending” the same Eq. (5)
written in the two different, though equivalent, forms (7) and (9).
The advantage of using such an approach consists in the fact that, from (11), one obtains that

o forg~0: M(q) =~ Ay — qB1~ Ay;
e forg — oo: M(q) ~ A, — gBy =~ —q Bs.

Consequently, instead of solving (12), one may think to solve iteratively

Ny = (N@) - M@)y?” +n(g), i=0,1,..., (13)
where
N(g) = A1 —qB>. (14)

Obviously, the iteration (13) is a convergent one iff the spectral radius of the iteration niatrix
N(q)"*M(q), sayp(q), is smaller than 1. Following [11,12], the iteration is said toAeonvergent

if p(g) <1forallg € C™.If the matrix pencil (14) has no eigenvalues having negative real part, and the
functionf(q) is analytic inC—, A-convergence is equivalent to requiring that the maximum amplification
factor,

Pt =maxp(ix), (15)

with i denoting the imaginary unit, is smaller than 1. We observe that, from (14), one obtains that

e p(0)=0,
e p® =lim,_p(g) =0,
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since, in both cases the iteration matrix is the zero matrix. Consequently, one has that, because of the
second property, the iteration (13) is well-suited for stiff problems, sincestiffeamplification factor

p® [11,12] is 0. Moreover, if the iteration matrix is well-defined in a neighborhood ef0, the first
property implies that

p(q)~qp, forg=0, (16)

wherep is thenonstiff amplification factor
Concerning the choices of the two “simple structured” matri¢eand B,, we shall here consider the
following choice, though different ones are possible,

A1 =14 Ly, B,=D+ Lg, (17)

whereL , and L are strictly lower triangular matrices, amitlis a diagonal matrix with positive entries.

With such assumptions, we have that the linear systems required by the iteration (13) are lower triangular

(block lower triangular when the method is applied to systems of equations). Moreover, in the case of

systems, one only needs to factorize matrices having the same size of the continuous problem, and the

number of matrices to be actually factored equals the number of distinct diagonal entries of thedmatrix
Finally, in order to keep low the computational cost, the weight funai@p is defined as

0(q)=U—gD)™*, (18)

so that the properties (11) are satisfied, the iteration (13) is well-defined fpeall~, and, in the case
of systems, no additional factorizations are required, besides those need&d for
With such assumptions, the only key-points which we need to clarify are the following ones:

(1) the choice of appropriate methods (5),
(2) the choice of the corresponding “simple structured” matridesand B, in (17) (the remaining
matricesB; and A, being defined by (8) and (10), respectively).

The first point will be discussed in the next section, whereas the second one will be addressed in Section 4.

3. Choice of the component methods

Let now introduce the methods that we shall implement in blended form, according to what has been
said in the previous section. Even though different choices can be made, we shall here consider methods
which have been already introduced in the past years by Watts and Shampine [19]. Such methods are
block methods characterized by the fact that each one of thquations which define the method
itself corresponds to a linear multistep formula. Even though the methods could be also derived in the
framework of Runge—Kutta methods (by means of thetfansform” [5,6,10]) we prefer to use the same
framework originally used in [19] (see also [4]).

In more detalil, let define the following x (+ + 1) matrices,

aél) ail) ...ozfl) ﬂél) ﬂil) ...ﬁr(l)
A=alAl=]| : | : . |, B=mb|Bl= : :

: : K (19)
(r) (r) (r) (r)
ap | oa” By | B ... B
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where the coefficients on thi¢h row of the two matrices define a suitablestep LMF. Assuming for
simplicity that the first- points are to be approximated, the further relation with (5) is that

n=—@-qb)yo.
It is not difficult to prove the following result.

Theorem 1. Let all LMFs defining(19) have anO(k”*1) truncation error. Then
AQ;=iBQ;_1, i=2,...,p,

whereq; = (1%, ..., )T, and, moreover
a= —Ado, b= Aq; — BQo.

Then the previous result tells us that, provided all LMFs in (19) are consistent, we can concentrate
our attention on the matrices and B alone. Moreover, since we assume both of them to be nonsingular,
one obtains that the method is uniquely defined by the matedx A~1B. It can be shown that we can
uniquely define such a matrix by imposipg= r, and by fixing its characteristic polynomial,

dz)=Y dyz', d =1 (20)
i=0

As matter of fact, one obtains that (see [4])

C=0G'FGQ™,
whereQ = (qy,...,q,), G =diagl!,...,r!), and

_dO
o _ ~4
1 - r—1
Concerning the choice of the characteristic polynomial (20), a necessary requirement for having a

stable method, is to have its roots with positive real part. In order to meet this requirement, and to ensure
good stability properties for the corresponding method, we choose the polynomial (20) as the reciprocal,
and scaled, polynomial at the denominator of the-) Padé approximation to the exponential,

r

_ w+r—0r! .
"d 1 — _ L
() g ST IR
In such a case, in fact, one obtaiAsstable methods for all andv =r — 2, — 1, r, which are also
L-stable forv < r [19] (see also [18]). Moreover, for all> 3, it can be shown that the local error of the
methods has the first— 1 entries which are @’*1), and therth one which is (for general nonlinear
problems)

e O(h"*3), whenr is even,
e O(h"*?), whenr is odd,

in which case, the global order of convergence of the corresponding method is, respectiveyor
r+1[4].
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In the present case, we look férstable methods and, consequently, we need to choose appropriate
values for the couple&, r), v € {r — 2, r — 1}. In order to make the proper choice, we observe that the
last entry of the vectoy in (5) is essentially given by th@, r) Padé approximation to the exponential.
We know that such an approximation is exaciyat 0 and asg — oo (due to theL-stability of the
methods). In addition to this, we also require that,/fo& 0 (see (4)), the discrete solution has the same
sign as the continuous one (which is the signygif whatever the stepsize used. By considering that
the Padé approximation, for=r — 2, r — 1, is analytic inC—, with no real and negative zeros when

e risevenand =r — 2,
e risoddandv =r — 1,

we shall hereafter consider the methods obtained in correspondence (@f 3e(2, 4), (4, 6), (6, 8),

(8,10), and (10,12) Padé approximations to the exponential (having orders 4, 6, 8, 10, 12 and
14, respectively). This in view of a variable order, variable stepsize implementation of the methods
themselves.

4. Properties and implementation details

In this section we shall study in more detail particular choices of appropriate matricaad By,
as defined in (17). As we have said, this uniquely defines the whole blended implementation of the
considered method, since the weight functrand the remaining matriceB; and A, are defined
according to (18), (8) and (10), respectively. We start considering the simpler case where

Ly=Lp=0, D=yl, y>0, (21)
since in such a case a complete spectral analysis can be carried out. In fact, one has that
Ai=1,  Ay=yB;Y,  Bo=yl, 0(@=0L-qy) 'L, (22)

which allow us to easily derive the following result.

Theorem 2. Assume that for the blended methd@) the previous equalitief21) hold true. Then, the
eigenvalues of the iteration matrix corresponding 18) and(14) are given by

g —y)?
A1—gy)?

Proof. Since (21) are satisfied, then also (22) do. Consequently, by taking into account (13) and (14),
one obtains that the iteration matrix is given by

I—=N@@)M(q) =1 —Q—qy) (I —gB1—qy*(B;* —ql))
= (1—qy) 2(A—qy)°I =1 +qB1+qy*(B;* —ql))
= (1—qy)?B;((¢°v® — 2qv) Bi+ 4 BS + qy*(I — qBy))
= q(1—qy) B *(B =2y Bi+y?I) =q(1—qy) *By (B — v ),
from which the thesis follows. O

A€o (By). (23)
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The above result allows us to easily characterize the value of the two paramieterd o as defined

in (15) and (16), respectively. In fact, by expanding (23} at 0, one readily obtains that

0= max M (24)

reo(B) A
Similarly, for g = ix, one has that the modulus of (23) is given by
x|p—yl?

A1+ x2y?)’
which is strictly monotone increasing [0, y ~1), and decreasing iy 1, c0). As a consequence, one
readily obtains that, at = y 1,

2
o* = max Ly
rea(By) 2)|A|
The above relations allow the derivation of simple criteria for choosing the paragneteteed one may
think to choose it in order to minimize either (24), or (25), or a combination of the two. Concerning
the minimization of (24) and (25), the following result may be used. Before stating it, let us order the
eigenvalues of the matriB,, so that

x =0,

(25)

2 > argi) > argha) >+ > arglh) > — 2.

Since the matrix is real, this means that we can only consider thef fiesfr/2] eigenvalues, in the
sequel. Let now assume that the moduli of the eigenvalues are strictly decreasing, that is,

A1l < A2] < -+ <Al
By settingi; = gojeiff, j=1,...,¢,then the previous two equations can be written as
T
O<gr <<y, §>§12--->§z>0- (26)

We can now state the following preliminary result.

Lemma 3. Assume thaf21) holds true and the eigenvalues of the matBix satisfy(26). Then, for all
values ofy greater than or equal to

R / i(COSC1 — COSC ;
y = maX}lI/J —|— ‘1/12-1'90190/, lI/J — 90]_@/( é‘l é‘j), (27)

jeld,...e Yj—¢1

one has that
Pyl iy

h 28
A4l jeLntr Al (28)

Proof. Indeed, in order for (28) to be satisfied, for ali- 1 one must have

2 Y
|A; — vl < A1 — vl .
251 |A1]
By multiplying both sides by |, and taking into account (26), one then obtains the following second
order inequality,

Y39 — @) — 2y W; + 19 (91 — ¢;) >0,
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which, considering tha?; < 0 and the discriminant of the equation is positive, is satisfied for all

V2wj+,/‘1/j2+§01§0j- O

The previous lemma allows us to state the desired results.

Theorem 4. Assume the hypotheses of LenBa be satisfied and, moreover, assume that

P1> 7, (29)
wherey is defined according t(27). It follows that the minimum value @f is obtained aty = ¢, and
it is given byp* = 1 — cosz;. If, in addition,

¢1C0S¢1 > 7, (30)
then the minimum value @fis obtained aty = ¢ coszy, and it is given byp = ¢; Sin’ ¢;.

Proof. Let us first consider the first point. By taking into account (25), we want to solve the problem
gl — |2
min max (#& vl
y>0 je{l,...0} 2)/%.

If such a minimum would be obtained at a valugyof: y (see (27)) then, from Lemma 3, the previous
problem would reduce to the following simpler one,

2 2
. + y< — 2¢1y COS 1 .

min 227 1y COSE1 _ inz <(p1 + = — 2cos¢1> =ming*(y).

y>0 2)/§01 y>0 2 1 y>0
Indeed, by considering that the only stationary pointgdfis given by (<p1) = 0 and, moreover,
W(gol) > 0, one then obtains that, from (29), at= @1, p* = g*(p1) =1— cosgl.

Similarly, for the second point we obtain that
& —y12 ¥+ y2— 21y cos 2 .
min max i 4 =min pry 1y COSE1 = mln(cpl + Y _ 2y cos;l) =ming(y),
y>0 je{l,...,£} Q; y>0 ¢1 y>0 ¥1 y>0

provided that the minimum is obtained at a valuerg ;? Indeed by considering that the only stationary
point of g is given bydg (p1c0s¢1) = 0 and, moreove 2 (p1€c0s¢1) > 0, one then obtains that, from

(30), aty = ¢1€0S¢1, p = §(p1COSL1) = @1 SiNF &y, O

I’(d

Remark 5. We observe that the above relation (27)—(29) can be also written as
ﬂ+ﬂ<2(l+cosgj—cosgl), j=2,...,¢L. (31)
(2

By taking into account (26), the previous inequality implies that all the eigenvalues of the rBatine

contained in a suitably small annulus, whose internal radiys.i similar conclusion can be obtained
from (27)—(30),

b oo <14c0d + 2C0s(1(COSE; — €OSty), j=2,...,¢, (32)
Y1 @j

which, however, is more restrictive than (31).
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It turns out that both results in Theorem 4 apply to the case of the methods considered at the end of
Section 3: indeed, according to what was stated in Remark 5, it can be shown that all the eigenvalues of
the matrixB; are contained in a suitably small annulus (see [4,16]), and (32) (and then (31)) turns out to
be satisfied. In Table 1 we list the obtained values of the param@serd p*, with the choicey = ¢;. We

omit to list the case corresponding to the chojce ¢, cos¢y, since the latter choice does not guarantee

the A-convergence of the corresponding iteration (13) and (14).

When the blended implementation does not satisfy (22), then the above analysis cannot be applied,
since the involved matrices no more commute. In such a case, one must resort to computational
techniques in order to minimize either one of the two parameters (15) and (16). In such a case, it is
useful to know thap is given by the spectral radius of the following matrix,

R=A7{'(B1— B2+ D(A; — Ay)). (33)
Concerning alternative choices for the matriggsand B,, we have considered the case where
1
-1 1
A= . : By=yl, (34)

-1 1

with A, = yB;lAl, andé(q) = (1—gy)~1I. In Table 2 we list the obtained results when choosing

so as to minimizep* and./ || R ||, respectively, wher® is the matrix defined in (33). As told before, in

such a case the parameters have been computed numerically. We observe that the choice of minimizing
v PlIR|l2 makes the method correspondingrte- 12 not A-convergent (though («)-convergent [12]

with o ~ 7 /2). Hereafter, we shall refer to the schemes corresponding to the above three choices as the

Table 1

Values of the parameterg* and 5 for the
methods satisfying (22)

r Padé y o* 0

3 (23) 07387 03398 0.5021
4  (24) 0.8482 05291 0.8975
6  (46) 07285 0.6299 0.9177
8 (68 0.6745 06885 0.9288
0
2

(8,10) 0.6433 0.7276 0.9361

1
12 (10,12) 0.6227 0.7560 0.9415

Table 2
Values of the parameteys’ and for the methods satisfying (34)
r  Padé % o* o 14 o* o

3 (2,3) 0.6884 0.2672 0.3366 0.5802 0.2998 0.2692
4 (2,4) 0.8351 0.4045 0.4513 0.5960 0.5427 0.3833
6 (46) 0.7677 0.5184 0.4747 05165 0.6687 0.4310
8 (6,8) 0.6151 0.5428 0.6032 0.4472 0.7858 0.4389
10 (8,10) 0.6046 0.6475 0.6884 0.4088 0.9017 0.4408
12 (10,12) 0.5819 0.7400 0.7462 0.3866 1.0004 0.4583
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typel, 2, and 3schemesrespectively. A comparative analysis of Tables 1 and 2 puts into evidence the
type 2 schemes as the ones with the best features, from the point of view of the amplification factors.
Nevertheless, the diagonal splitting characterizing the type 1 schemes makes them very appealing for ar
implementation on parallel computers.

4.1. Order variation

We now briefly examine some details concerning the mesh and the order variation for the methods
considered above. First of all, we observe that the iteration (13) and (14) becomes, for problem (1)
(again, for simplicity let us consider the first application of the method),

yi =y — (A1 ® 1, —hB, ® J) 1(0((AL— A2) ® I,y — h(B1 — Bo) ® I,f ©)
+ A1,y —hB,®L,f? +n), i=12..., (35)

wheref @ = (£{”, ..., fT, J is the Jacobian matrix of at (10, o), the vectory only depends on

the initial condition, and (assuming to deal with the type 1, 2 or 3 schemes previously introduced)
0 =1® (I, —hyJ). Consequently, ib iterations are performed to obtain convergence, the overall
computational cost is approximately given by:

o the factorization of the: x m matrix2 =1,, — hy J,
e rv function evaluations, and
e 2rv system solvings with the factors of the matsix

Considering that the last point is the most time consuming section, for small-medium size problems, we
now shall briefly sketch a variable order strategy with the aim of reducing this cost. As usual, during
the v iterations (35), one is able to get an estimate, sagf the spectral radius of the iteration matrix,
which will depend on the stepsiZzeand on the eigenvalues of the matrix Assuming that the stepsize

hnew IS t0 be used in the next step, one then obtains that the spectral radius of the new iteration matrix is
approximately given by (see (16))

Pnew = P hnew.
h
If the same stopping criterion has to be satisfied, then approximately
_ logp
Phew ="V l0g pnew

iterations will be required. Now, assume that we are able to know the stepsizg,,saybe used by the

next higher order method, among those listed at the end of Section 3. Consequently, the spectral radius o
the corresponding iteration matrix, and the number of iterations to get convergence, can be respectively
estimated as

hupPup b log pnew
]’ll5 ) up new |Og ,Oup )

wherep and pp are the (known) nonstiff amplification factors (see (16)) of the current method and of
the higher order one.

Pup= P
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If we normalize the cost by dividing the number of required linear systems by the covered integration
interval, we have that the normalized cost for the current method is given by

2r (Vnew+ 1) _ 2(Vnew+ 1)

(36)
hnew hnew
Consequently, the higher order method has to be preferred when
Vnew+ 1 - vp+1 (37)

hnew hup ’
which can be readily computed, provided that estimate gy andh,, are available. Concerning this
point, let us consider the local error of the currently used methode sages, ..., e,)": from Section 3,

its entries behave as(@*1), with the only exception of the last entry, which ig#D*?), for r = 3, and
O(h'*3), for r = 4,6, 8,10, 12. Therefore, if we use the following norm for measuring the error,

thenm 2| e, ||, provides an estimate of the error for the closest higher order method. Consequently,
when estimating the local error to predict the new stepkijgg, we are also able to predicf no extra
cost the stepsizé,, for the higher order method.

In such a way, we have a simple criterion to decide whether to increase the order of the method.
Conversely, the order is reduced when the iteration (35) fails to converge, or when the estimated value

T T T T T

linear systems

scd

Fig. 1. Variable versus fixed order implementation.
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of the spectral radius of the iteration matrix,is too large. We also mention that the local error can be
estimated, by using deferred correction (see, e.g., [3]), at the cost of one iteration. This extra iteration is
the reason for the+1" increment at the numerators in (36) and (37) (full details will be provided in a
future paper).

In order to put into evidence the effectiveness of the presented variable order strategy, in Fig. 1 we plot
the work precision diagram, with the number of required system solvings with the factors of the matrix
$2, for the type 2 schemes applied to the Robertson problem. It can be seen that the plot of the variable
order method (solid line and squares) is almost everywhere below those of the fixed order ones, with
order 4 (pluses), 6 (stars), 8 (rhombuses) and 10 (triangles).

5. Numerical tests

We report here a few numerical tests to compare the proposed blended schemes (implemented in
Matlab) with one of the best codes currently available, i.e., the Fortran code GAM [13]. This is because
the methods used in such codes are implemented by using a nonlinear splitting, still requiring one
m x m factorization per step, and an equal number of system solvings and function evaluations per
inner iteration, depending on the (variable) order of the method used. In this respect, we recall that the
blended schemes require twice the number of system solvings per inner iteration, with respect to the
function evaluations.

In Fig. 2 are the results obtained for the Van der Pol problem, where we plot the work precision
diagrams, with the needed linear system solvings and the function evaluations, for the GAM code (solid
line and pluses), the type 1 schemes (dashed line and downward triangles), the type 2 schemes (dast
dotted line and rhombuses), and the type 3 ones (dotted line and squares), as defined in Section 4. Th
symbols are the same for Figs. 3 and 4, where we plot the results for the Robertson problem and the
Ring Modulator problem (the latter problem from the CWI testset [14]). For the type 1 schemes we
recall that the splitting is diagonal. This implies that the method with blocksizan be implemented
onr parallel processors with a perfect degree of parallelism, for what concerns the system solvings and
the function evaluations. For this reason, for the type 1 schemes we also plot the parallel cost (dashed
lines and upward triangles), obtained by considering that the parallel complexity per iteration is 2 system
solvings and 1 function evaluation.

We observe that all methods require a comparable number of linear system solvings. On the other
hand, the blended schemes require approximately half the number of function evaluations as the GAM
code. Moreover, we stress that the type 1 schemes, characterized by a diagonal splitting, do have gooc
potentialities for a parallel implementation.

5.1. Conclusions

In this paper we have studied the solution of the discrete problems generated by the application of
block implicit methods for ODEs. By suitabllendingtwo discrete problems corresponding to the same
method, it is indeed possible to naturally define a corresponding nonlinear splitting. By properly choosing
the methods, and the discrete problems to combine, it has been shown that very efficient splittings can
be obtained. In particular, a diagonal splitting has been defined, which seems to be promising for the
implementation on parallel computers.



42

linear systems

function evaluations

—
(=}
w

L. Brugnano, C. Magherini / Applied Numerical Mathematics 42 (2002) 29-45

3 4 5 6 7 8 9 10 11 12 13
scd
T T T T T T T
x %
> _ i
-7 T //A\A(,/A
v g~ AT
/A//,
Al -
/ Toeae T
/A
AT
1 1 1 1 1 | 1 | 1 |
3 4 5 6 7 8 9 10 11 12 13
scd

Fig. 2. Results for the Van der Pol problem.
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Fig. 3. Results for the Robertson problem.
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Fig. 4. Results for the Ring Modulator problem.
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