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Abstract In a recent series of papers, the class of energy-conserving Runge-Kutta
methods named Hamiltonian BVMs (HBVMs) has been defined and studied. Such
methods have been further generalized for the efficient solution of general conser-
vative problems, thus providing the class of Line Integral Methods (LIMs). In this
paper we derive a further extension, which we name Enhanced Line Integral Meth-
ods (ELIMs), more tailored for Hamiltonian problems, allowing for the conservation
of multiple invariants of the continuous dynamical system. The analysis of the meth-
ods is fully carried out and some numerical tests are reported, in order to confirm the
theoretical achievements.
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1 Introduction

Hamiltonian problems arise in many fields of application, ranging from the nano-
scale of molecular dynamics to the macro-scale of celestial mechanics. Such
problems are in the following form:

y ′ = J∇H(y), y(0) = y0 ∈ R
2m, (1)

where the state vector is often partitioned as

y =
(
q

p

)
, q, p ∈ R

m,

with q the vector of the positions and p the vector of the momenta. Moreover,

J =
(

0 Im
−Im 0

)
= −J T = −J−1, (2)

and H(y) ≡ H(q, p) is the Hamiltonian function defining the problem. From (1)
and (2), it is straightforward to derive that H(y(t)) ≡ H(y0) for t ≥ 0, since

d

dt
H(y(t)) = ∇H(y(t))T y ′(t) = ∇H(y(t))T J∇H(y(t)) = 0,

due to the fact that J is skew-symmetric. For isolated mechanical systems, the Hamil-
tonian has the physical meaning of the total energy of the system and, therefore, it is
of interest to derive methods which are able to preserve this property in the discrete
solution. For the continuous problem, it can be seen that the symplecticity of the map
implies the property of energy conservation of the given system, so that a relevant
line of investigation, concerning the efficient numerical solution of such problems,
has been that of devising symplectic methods, namely methods for which the discrete
map inherits the property of symplecticity (see, e.g., [19, 32, 33]). In particular, in
[32] the existence of infinitely many symplectic Runge-Kutta methods was proved,
and an algebraic criterion for symplectic Runge-Kutta methods was provided.

Nevertheless, unless the continuous case, in the discrete setting the symplectic-
ity of the map doesn’t imply energy-conservation (see also [11]), so that a different
line of investigation has been that of looking for energy-conserving methods. One
of the first approaches along this line is represented by discrete gradient methods
[20, 29], which are based upon the definition of a discrete counterpart of the gra-
dient operator, so that energy conservation for the numerical solution is guaranteed
at each step and for any choice of the integration step-size. A different approach
is based on the concept of time finite element methods, which has led to the defi-
nition of energy-conserving Runge-Kutta methods [1, 2, 34, 35], based on a local
Galerkin approximation of the equation. A partially related approach is given by
discrete line integral methods [26–28], where the key idea is to exploit the relation
between the method itself and the discrete line integral, i.e., the discrete counterpart
of the line integral in conservative vector fields. This, in turn, allows exact conserva-
tion for polynomial Hamiltonians of arbitrarily high-degree, resulting in the class of
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methods later named Hamiltonian Boundary Value Methods (HBVMs), which have
been developed in a series of papers [4, 5, 7–13] (we refer to [6] for a systematic
presentation of this approach). Another approach, strictly related to the latter one, is
given by the averaged vector field method [31] and its generalizations [21], which
have been also analysed in the framework of B-series [16, 17, 24] (i.e., methods
admitting a Taylor expansion with respect to the step-size). In particular, the close
connection between the limit formulae of HBVMs and the methods described in [21]
has been thoroughly analyzed in [10].

For sake of completeness, we also mention that attempts aiming to obtain
methods that, in a weaker sense, have both the property of symplecticity and
energy-conservation have been also considered (see, e.g., [14, 25, 36]).

Sometimes, the dynamical system defined by (1) has additional invariants, besides
the Hamiltonian. It is therefore interesting to devise methods which are able to pre-
serve all of them in the discrete solution. The approach based on the discrete line
integrals, which HBVMs rely on, has been then used to cope with this problem,
leading to the class of Line Integral Methods (LIMs) which are able to preserve any
number of invariants for general conservative problems [3] (see also [6]). In this
paper, we consider a different generalization of HBVMs, still based on the concept of
discrete line integral, which is able to provide multiple invariants conserving meth-
ods, which are more efficient than LIMs, when the problem is in the form (1). For
sake of completeness, we mention that a multiple invariants conserving version of
discrete gradients is mentioned in [29] (though without providing any example) and
an example of such methods is given in (unpublished, [30]), using an antisymmetric
tensor taking discrete gradients of all integrals to be preserved as input. Additional
multiple invariants conserving methods, obtained by using discrete gradients, are
defined in [18].

With this premise, the paper is organized as follows: in Section 2 we recall the
basic facts about HBVMs; in Section 3 we define their multiple invariants conserving
extension; in Section 4 we provide numerical tests for the new presented methods;
finally, in Section 5 we give some conclusions.

2 HBVMs

Let us consider a polynomial approximation to the solution of (1), over the interval
[0, h], in the form

σ ′(ch) =
s−1∑
j=0

Pj (c)γj (σ ), c ∈ [0, 1], (3)

where {Pj }j≥0 is the family of Legendre polynomials, shifted and scaled in order to
be orthonormal on the interval [0, 1],

degPj = j,

∫ 1

0
Pj (x)Pj (x)dx = δij , ∀i, j ≥ 0. (4)
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By imposing the initial condition σ(0) = y0, and setting y1 ≡ σ(h) ≈ y(h), the
coefficients γj (σ ) are determined by imposing the conservation of energy at t = h.
This implies that

0 = H(y1)−H(y0) = H(σ(h)) −H(σ(0)) =
∫ h

0
∇H(σ(t))T σ ′(t)dt

= h

∫ 1

0
∇H(σ(τh))T σ ′(τh)dτ. (5)

By taking into account of (3), one then requires [10]:

s−1∑
j=0

[∫ 1

0
Pj (τ)∇H(σ(τh))dτ

]T

γj (σ ) = 0, (6)

which holds true, provided that

γj (σ ) = ηjJ

∫ 1

0
Pj (τ)∇H(σ(τh))dτ, j = 0, . . . , s − 1, (7)

where η0, . . . , ηs−1 are arbitrary constants. HBVMs are then obtained by setting

ηj = 1, j = 0, . . . , s − 1,

resulting in an approximation of order 2s to y(h) [10, 12]:

σ(h) − y(h) = O(h2s+1).

In particular, by considering the orthonormality of the polynomial basis, one obtains
that

y1 ≡ σ(h) = y0 + hγ0(σ ) = y0 +
∫ h

0
J∇H(σ(t))dt.

This latter expression clearly shows that this polynomial approximation generalizes
that defined in [31]. However, the resulting polynomial approximation, given by

σ(ch) = y0 + h

s−1∑
j=0

∫ c

0
Pj (x)dx γj (σ ), c ∈ [0, 1], (8)

provides an effective numerical method only when the integrals appearing in (7) are
conveniently approximated by means of a quadrature formula. If this latter formula
is defined at the k Gauss-Legendre points in [0, 1],

0 < c1 < · · · < ck < 1, (9)

(i.e., Pk(ci) = 0, i = 1, . . . , k) and corresponding quadrature weights

b1, . . . , bk > 0, (10)

one then obtains a HBVM(k, s) method which can be cast as a k-stage Runge-Kutta
method, with abscissae (9), weights (10), and Butcher matrix given by

A = IsPT
s �, (11)



Numer Algor (2014) 65:611–632 615

where

Ps = (Pj−1(ci)), Is =
(∫ ci

0
Pj−1(x)dx

)
∈ R

k×s , � = diag(b1, . . . , bk).

The corresponding polynomial approximation is then given by [10, 12]

u(ch) = y0 + h

s−1∑
j=0

∫ c

0
Pj (x)dx

[
k∑

�=1

b�Pj (c�)J∇H(u�)

]

≡ y0 + h

s−1∑
j=0

∫ c

0
Pj (x)dx γ̂j , c ∈ [0, 1], (12)

where
u� ≡ u(c�h), � = 1, . . . , k, (13)

are nothing but the stages of the Runge-Kutta method. It can be proved that [8, 10,
12], for all k ≥ s, a HBVM(k, s) method:

• has order 2s;
• is symmetric;
• when k = s it reduces to the s-stage Gauss-Legendre method;
• is energy-conserving for all polynomial Hamiltonians of degree not larger than

2k/s. Differently, the error in the Hamiltonian is O(h2k+1), when H is suitably
regular.

From the last point, a practical conservation of the Hamiltonian follows, also con-
sidering that the computational complexity of the method is s, independently of k.
Indeed, by reformulating the discrete problem generated by the method in terms of
the s unknown coefficients {γ̂j } appearing in (12), one obtains the discrete problem
[11]

γ = PT
s �⊗ J ∇H(e ⊗ y0 + hIs ⊗ I γ ),

where

e =
⎛
⎜⎝

1
...

1

⎞
⎟⎠ ∈ R

k, γ =
⎛
⎜⎝

γ̂0
...

γ̂s−1

⎞
⎟⎠ ,

which has (block)-size s, independently of k.
It is worth mentioning that, because of the existing relations between the integrals

of the polynomials {Pj } and the polynomials themselves, matrix (11) can be also
written as

A = Ps+1X̂sPT
s �, (14)

where

X̂s =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2 −ξ1

ξ1 0
. . .

. . .
. . . −ξs−1
ξs−1 0

ξs

⎞
⎟⎟⎟⎟⎟⎟⎠

≡
(

Xs

0 . . . 0 ξs

)
,
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with

ξi =
(

2
√

4i2 − 1
)−1

, i = 1, . . . , s.

By considering that, for k = s,

Ps+1 = (Ps 0
)
, PT

s � = P−1
s ,

one then sees that (14) can be regarded as a generalization of the W-transformation
for collocation methods, as defined by Hairer and Wanner [23, page 79].

3 Multiple invariants conserving HBVMs

We now use again the approach based on line integrals, to define a multiple invariants
conserving version of HBVM(k, s) methods. Though the basic idea is similar to that
used in [3], nevertheless, the obtained methods are definitely different from those
described in that reference: the similarity between the two classes of methods stems
from the use of the same, straightforward, methodological tool, given by discrete line
integrals [26].

In more details, we now use the fact that energy conservation is gained, with γj (σ )

in the form of (7), whichever ηj is. Assume then that

L : R2m → R
ν (15)

is a set of ν (functionally independent) smooth invariants for the dynamical system
(1), besides the Hamiltonian H. Consequently, one has

∇L(y)T J∇H(y) = 0 ∈ R
ν, ∀y, (16)

where ∇L(y)T is the Jacobian matrix of L. We will now extend the approach
described in the previous section, in order to impose their conservation. For sake
of simplicity, we shall at first define a polynomial approximation σ ∈ �s (where
s > ν), at a continuous level (i.e., similar to (3–8)), then passing to define a fully
discrete approximation u ∈ �s . Clearly, by setting σ in the form (3), we gain energy-
conservation by repeating similar steps as done until (8). The difference, in such a
case, is obtained by setting

ηj = 1, j = 0, . . . , s − ν − 1,

(17)

ηj =
[
1 − h2(s−1−j)αj

]
, j = s − ν, . . . , s − 1,

with the coefficients {αj } determined in order to obtain the conservation of the ν addi-
tional invariants (15)–(16), even though, in principle, any subset of the ν coefficients
{ηj } could be used for this purpose. By setting, as before, the new approximation

y1 ≡ σ(h) ≈ y(h),
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from (3), (7), and (17) one then obtains, by requiring conservation of all invariants,

0 = L(y1)− L(y0) = L(σ(h)) − L(σ(0)) =
∫ h

0
∇L(σ(t))T σ ′(t)dt

= h

∫ 1

0
∇L(σ(τh))T σ ′(τh)dτ = h

s−1∑
j=0

[∫ 1

0
Pj (τ)∇L(σ(τh))dτ

]T

γj (σ )dτ

≡ h

⎡
⎣s−1∑
j=0

φj (σ)
T γ̄j (σ ) −

s−1∑
j=s−ν

h2(s−1−j)αjφj (σ )
T γ̄j (σ )

⎤
⎦ ,

where (see (7) and (17)), for all j ≥ 0:

φj (σ) =
∫ 1

0
Pj (τ)∇L(σ(τh))dτ ∈ R

2m×ν,

(18)
γ̄j (σ ) =

∫ 1

0
Pj (τ)J∇H(σ(τh))dτ ∈ R

2m.

Consequently, energy-conservation is “for free” and, moreover, the conservation of
the invariants is gained provided that

s−1∑
j=s−ν

h2(s−1−j)αjφj (σ )
T γ̄j (σ ) =

s−1∑
j=0

φj (σ)
T γ̄j (σ ). (19)

By defining the matrix

�(σ) = [
h2(ν−1)φs−ν(σ )

T γ̄s−ν(σ ), . . . , h
0φs−1(σ )

T γ̄s−1(σ )
] ∈ R

ν×ν (20)

and the vectors

α =
⎛
⎜⎝

αs−ν

...

αs−1

⎞
⎟⎠ , b(σ ) =

s−1∑
j=0

φj (σ)
T γ̄j (σ ) ∈ R

ν,

Equation (19) can be recast in vector form as

�(σ)α = b(σ ). (21)

The following results then hold true.

Lemma 1 Let ψ : [0, h] → V , with V a vector space, admit a Taylor expansion at
0. Then, for all j ≥ 0:

∫ 1

0
Pj (τ)ψ(τh)dτ = O(hj ).
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Proof By taking into account (4), one obtains:∫ 1

0
Pj (τ)ψ(τh)dτ =

∫ 1

0
Pj (τ)

∑
n≥0

ψ(n)(0)

n! τnhndτ =
∑
n≥0

ψ(n)(0)

n! hn
∫ 1

0
Pj (τ)τ

ndτ

=
∑
n≥j

ψ(n)(0)

n! hn
∫ 1

0
Pj (τ)τ

ndτ = O(hj ).

Lemma 2 If H is suitably regular, then the right-hand side of problem (1) can be
expanded as

J∇H(y(ch)) =
∑
j≥0

Pj(c)γ̄j (y), c ∈ [0, 1],

where γ̄ (y) is defined according to (18).

Proof See [13].

Lemma 3 With reference to (21), one has: b(σ ) = O(h2s).

Proof From (16) and (18) one obtains:∑
j≥0

φj (σ)
T γ̄j (σ ) = 0.

Consequently, by virtue of Lemma 1,

b(σ ) =
s−1∑
j=0

φj (σ)
T γ̄j (σ ) = −

∑
j≥s

φj (σ )
T γ̄j (σ ) = O(h2s ).

Lemma 4 Matrix �(σ) in (21) has O(h2s−2) entries.

Proof The proof follows immediately from (20) and Lemma 1.

In order to simplify the subsequent arguments, we make the following assumption
on matrix �(σ):1

Assumption 1 Matrix �(σ) is nonsingular.

The following result then easily follows from Lemmas 3 and 4.

Theorem 1 Under Assumption 1, the vector α in (21) has O(h2) entries.

1Actually, it would suffice the system (21) to be consistent, but the arguments would become more
involved.
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Remark 1 We observe that, in order for Theorem 1 to hold, it is necessary that

s > ν. (22)

In fact, when s = ν, from (19) one obtains that the products h2(s−1−j)αj are all equal
to 1 and then, from (17) it follows that ηj = 0, j = 0, . . . , s − 1. Consequently, in
the sequel we shall assume that

η0 = 1. (23)

We can now state the following result.

Corollary 1 Under Assumption 1, the method conserves all the invariants. Moreover,
σ(h) − y(h) = O(h2s+1).

Proof The first part of the proof follows from the definition of the method. The sec-
ond part of the proof strictly follows the technique used in [13]. Let then y(t;ω, z)
be the solution of problem (1) satisfying the initial condition y(ω) = z. Moreover,
let �(t, τ ) be the corresponding fundamental matrix solution of the associated varia-
tional problem. Consequently, from Lemmas 1 and 2, Theorem 1, and from (17), one
obtains:

σ(h)− y(h) = y(h; h, σ(h))− y(h; 0, σ (0)) =
∫ h

0

d

dt
y(h; t, σ (t))dt

=
∫ h

0

[
∂

∂ω
y(h;ω, σ(t))|ω=t +

∂

∂z
y(h; t, z)|z=σ(t) σ

′(t)
]

dt

=
∫ h

0
�(h, t)

[−J∇H(σ(t))+ σ ′(t)
]

dt

= h

∫ 1

0
�(h, τh)

⎡
⎣−

∑
j≥0

Pj (τ)γ̄j (σ )+
s−1∑
j=0

Pj(τ)γj (σ )

⎤
⎦ dτ

= −h

∫ 1

0
�(h, τh)

⎡
⎣∑

j≥s

Pj (τ )γ̄j (σ )+
s−1∑

j=s−ν

Pj (τ )h
2(s−1−j)αj γ̄j (σ )

⎤
⎦ dτ

= −h
∑
j≥s

⎡
⎢⎢⎢⎣
∫ 1

0
Pj (τ)�(h, τh)dτ

︸ ︷︷ ︸
=O(hj )

⎤
⎥⎥⎥⎦

=O(hj )︷ ︸︸ ︷
γ̄j (σ ) −

h

s−1∑
j=s−ν

⎡
⎢⎢⎢⎣
∫ 1

0
Pj (τ)�(h, τh)dτ

︸ ︷︷ ︸
=O(hj )

⎤
⎥⎥⎥⎦ h2(s−1−j)

=O(h2)︷︸︸︷
αj γ̄j (σ )︸ ︷︷ ︸

=O(hj )

= O(h2s+1).
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3.1 Discretization and ELIM(r, k, s) methods

As is clear, the polynomial approximation σ ∈ �s defined above doesn’t yet provide
a numerical method: this will be obtained once the integrals in (18) are approximated
by means of a suitable quadrature formula. As in the case of LIM(r, k, s) methods in
[3], for this purpose we choose the abscissae

0 < ĉ1 < · · · < ĉr < 1, (24)

placed at the r Gauss-Legendre points in [0,1], and the corresponding weights

b̂1, . . . , b̂r > 0, (25)

besides (9)–(10) previously considered. In so doing, we obtain a new polynomial
approximation, say u ∈ �s , defined by replacing the integrals with the given quadra-
ture formula, having order 2r or 2k, depending on the chosen abscissae. By setting
u� formally defined as in (13), and (see (24))

û� ≡ u(ĉ�h), � = 1, . . . , r,

for 0 ≤ j ≤ s − 1 one then obtains:

φ̂j =
r∑

�=1

b̂�Pj (ĉ�)∇L(û�) ≡ φj (u)−�j(h),

(26)
γ̂j =

k∑
�=1

b�Pj (c�)J∇H(u�) ≡ γ̄j (u)−�j(h),

in place of (18) where, by denoting

μ(j) =
⌊

2j

s

⌋
, j ∈ {r, k}, (27)

and assuming L and H suitably regular,

�j(h) =
⎧⎨
⎩

0, if L ∈ �μ(r),

O(h2r−j ), otherwise,
(28)

and

�j (h) =
⎧⎨
⎩

0, if H ∈ �μ(k),

O(h2k−j ), otherwise.
(29)

Remark 2 Actually, for any invariant in (26) one could use a different quadrature for-
mula, depending on the required accuracy. Nevertheless, for sake of brevity, we shall
hereafter consider only the use of two (possibly) different quadratures: (9)–(10) for
the {γ̂j }, and (24)–(25) for the {φ̂j }. However, the generalization is straightforward.
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Setting by η̂j and α̂j , respectively, the discrete approximations to (17), the new
polynomial approximation is then given by

u(ch) = y0 + h

s−1∑
j=0

∫ c

0
Pj (x)dx η̂j γ̂j (30)

≡ y0 + h

⎡
⎣s−1∑
j=0

∫ c

0
Pj (x)dx γ̂j −

s−1∑
j=s−ν

∫ c

0
Pj (x)dx h2(s−1−j)α̂j γ̂j

⎤
⎦ ,

with the scalars α̂j satisfying the equation (compare with (19)):

s−1∑
j=s−ν

h2(s−1−j)α̂j φ̂
T
j γ̂j =

s−1∑
j=0

φ̂T
j γ̂j . (31)

Similarly as previously done in (20)–(21), by defining the matrix

�̂ =
[
h2(ν−1)φ̂T

s−ν γ̂s−ν, . . . , h
0φ̂T

s−1γ̂s−1

]
∈ R

ν×ν (32)

and the vectors

α̂ =
⎛
⎜⎝
α̂s−ν

...

α̂s−1

⎞
⎟⎠ , b̂ =

s−1∑
j=0

φ̂T
j γ̂j ∈ R

ν,

Equation (31) can be recast in vector form as

�̂α̂ = b̂. (33)

Since the number of the additional invariants (16) has to satisfy (22) (and, then, (23)
holds true), similarly as in the case of HBVM(k, s), the new approximation is given
by

y1 ≡ u(h) = y0 + hγ̂0 = y0 + h

k∑
�=1

b�J∇H(u�). (34)

Definition 1 We shall denote by ELIM(r, k, s) (Enhanced LIM(r, k, s)) the meth-
ods defined by (30)–(34). In particular, for similarity with the GHBVM(k, s) ≡
LIM(k, k, s) methods in [3], when r = k we shall speak about an EHBVM(k, s)

(Enhanced HBVM(k, s)) method.

The following results then easily follow, providing a discrete counterpart of
Theorem 1.

Theorem 2 Under Assumption 1, for all r, k ≥ s matrix �̂ is nonsingular, for all
sufficiently small step-sizes h, and the vector α̂ has O(h2) entries.

We can now state the following results, concerning the order of accuracy of the
discrete solution, as well as of the invariants, provided by ELIM(r, k, s) methods.
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Theorem 3 Assume that the Hamiltonian function defining problem (1) is a poly-
nomial of degree less than or equal to μ(k) as defined in (27). Then, ELIM(r, k, s)

method is energy-conserving, provided that r ≥ s. Differently, for all general and
suitably regular H, one obtains

H(y1)−H(y0) = O(h2k+1), ∀k ≥ s,

provided that r ≥ s.

Proof One has:

H(y1)−H(y0) = H(u(h))−H(u(0)) =
∫ h

0
∇H(u(t))T u′(t)dt

= h

∫ 1

0
∇H(u(τh))T u′(τh)dτ = h

∫ 1

0
∇H(u(τh))T

s−1∑
j=0

Pj (τ)η̂j γ̂jdτ

= h

s−1∑
j=0

[∫ 1

0
∇H(u(τh))Pj (τ )dτ

]T

η̂j γ̂j = h

s−1∑
j=0

η̂j γ̄j (u)
T J γ̂j = (∗).

The first part of the proof easily follows from the fact that, if H ∈ �μ(k), then

γ̂j = γ̄j (u), j = 0, . . . , s − 1,

so that (∗) = 0, since J is skew-symmetric. In general, assuming that H is suitably
regular, one has (see (26) and (29)):

(∗) = h

s−1∑
j=0

η̂j γ̄j (u)
T J (γ̄j (u)−�j (h)) = − h

s−1∑
j=0

=O(1)︷︸︸︷
η̂j γ̄j (u)

T︸ ︷︷ ︸
=O(hj )

J

=O(h2k−j )︷ ︸︸ ︷
�j(h)

= O(h2k+1).

Using similar arguments, by means of (28) it is possible to prove the following
result.

Theorem 4 Assume that the invariants (16) of problem (1) are polynomials of degree
less than or equal to μ(r) as defined in (27). Then, EHBVM(r, k, s) method is
invariants-conserving, provided that k ≥ s. For all general and suitably regular L,
one obtains

L(y1)− L(y0) = O(h2r+1), ∀r ≥ s,

provided that k ≥ s.

Next result concerns the order of accuracy of the numerical solution.
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Theorem 5 Assuming that both H and L are suitably regular, for all r, k ≥ s the
numerical solution generated by a ELIM(r, k, s) method satisfies

y1 − y(h) = O(h2s+1).

That is, the method has order 2s.

Proof The proof proceeds in a similar way as that of Corollary 1. By using the same
notation in that corollary, one has:

y1 − y(h) = y(h;h, u(h)) − y(h, 0, u(0)) =
∫ h

0

d

dt
y(h; t, u(t))dt

=
∫ h

0

[
∂

∂ω
y(h;ω, u(t))|ω=t +

∂

∂z
y(h; t, z)|z=u(t) u

′(t)
]

dt

=
∫ h

0
�(h, t)[−J∇H(u(t)) + u′(t)]dt

= h

∫ 1

0
�(h, τh)

⎡
⎣−∑

j≥0

Pj (τ )γ̄j (u) +
s−1∑
j=0

Pj (τ )η̂j γ̂j

⎤
⎦ dτ

= h

∫ 1

0
�(h, τh)

⎡
⎣−∑

j≥0

Pj (τ )γ̄j (u) +
s−1∑
j=0

Pj (τ )η̂j (γ̄j (u)−�j(h))

⎤
⎦ dτ

= h

∫ 1

0
�(h, τh)

⎡
⎣−

s−1∑
j=0

Pj (τ )�j(h)−
∑
j≥s

Pj (τ )γ̄j (u)−
s−1∑

j=s−ν

Pj (τ )h
2(s−1−j)α̂j γ̄j (u)

⎤
⎦ dτ

= h

s−1∑
j=0

⎡
⎢⎢⎢⎢⎣−

∫ 1

0
Pj (τ )�(h, τh)dτ

︸ ︷︷ ︸
=O(hj )

⎤
⎥⎥⎥⎥⎦

=O(h2k−j )︷ ︸︸ ︷
�j(h) −h

∑
j≥s

⎡
⎢⎢⎢⎢⎣
∫ 1

0
Pj (τ )�(h, τh)dτ

︸ ︷︷ ︸
=O(hj )

⎤
⎥⎥⎥⎥⎦

=O(hj )︷ ︸︸ ︷
γ̄j (u)

−h

s−1∑
j=s−ν

⎡
⎢⎢⎢⎢⎣
∫ 1

0
Pj (τ )�(h, τh)dτ

︸ ︷︷ ︸
=O(hj )

⎤
⎥⎥⎥⎥⎦h2(s−1−j)

=O(h2)︷︸︸︷
α̂j γ̄j (u)︸ ︷︷ ︸

=O(hj )

= O(h2k+1)+O(h2s+1)+O(h2s+1) = O(h2s+1).

For sake of completeness, we also mention the following result, whose proof is
straightforward (see, e.g., [6, 8]).

Theorem 6 Provided that the abscissae (9) and (24) are symmetrically distributed
in the interval [0,1], the ELIM(r, k, s) method is symmetric.
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3.2 Runge-Kutta type formulation of ELIM(r, k, s) methods

Though the method (30)–(34) is not strictly a Runge-Kutta method, nevertheless, it
admits a Runge-Kutta type formulation which is quite useful to represent it. In more
details, we already saw that a HBVM(k, s) methods is a k-stage Runge-Kutta method
defined by the following Butcher tableau (see (11))

c IsPT
s �

bT ,

where, as usual, c is the vector of the abscissae and b is the vector of the weights.
Moreover, we recall that the only formal difference between a HBVM(k, s) method
and an ELIM(r, k, s) method consists in the coefficients η̂1, . . . , η̂s−1 which may
assume values different from 1 (indeed, η̂0 = 1, as stated in (23)). Consequently, by
introducing the diagonal matrix

�s = diag(1, η̂1, . . . , η̂s−1),

one obtains the following Runge-Kutta type formulation of an ELIM(r, k, s) method:

c Is�sPT
s �

bT .

As an example, HBVM(2, 2) is the usual 2-stage Gauss method, whereas ELIM(r, 2,
2) is given by

1
2 −

√
3

6
1
4 + (η̂1 − 1)

√
3

12
1
4 − (η̂1 + 1)

√
3

12

1
2 +

√
3

6
1
4 + (η̂1 + 1)

√
3

12
1
4 − (η̂1 − 1)

√
3

12

1
2

1
2

As expected, when η̂1 = 1 one retrieves the usual 2-stage Gauss method.

4 Numerical tests

We here report a few numerical tests, aimed to assess the theoretical findings, as well
as to compare the Enhanced Line Integral Methods (ELIMs), here introduced, with
the Line Integral Methods (LIMs) defined in [3]. This will be done on a Hamiltonian
problem possessing multiple invariants. The generated discrete problems are solved
by means of a fixed-point iteration, even though the efficient implementation of both
classes of methods deserves a further investigation.

In order to compare the methods, it will be useful to consider that, for a given
problem possessing ν invariants besides the Hamiltonian, one has:

cost of 1 LIM(r1, k1, s) fixed-point iteration

cost of 1 ELIM(r2, k2, s) fixed-point iteration
≈ k1 + (ν + 1)r1

k2 + νr2
. (35)
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Consequently, when r1 = k1 = r2 = k2 ≡ k, one obtains that2

cost of 1 GHBVM(k, s) fixed-point iteration

cost of 1 EHBVM(k, s) fixed-point iteration
≈ ν + 2

ν + 1
. (36)

That said, the problem that we consider is the well known Kepler problem [3, 22],
defined by the Hamiltonian

H(q, p) = 1

2
‖p‖2

2 +
1

‖q‖2
, q, p ∈ R

2. (37)

When the initial condition is chosen as

(qT0 , p
T
0 ) =

(
1 − ε, 0, 0,

√
1+ε
1−ε

)
, ε ∈ [0, 1),

its solution is periodic, with period 2π , and is given by an ellipse of eccentricity ε in
the q-plane. This problem admits two additional (independent) invariants of motion,
besides the Hamiltonian (37), given by the angular momentum

L1(q, p) = qT J2p, J2 =
(

0 1
−1 0

)
, (38)

and the Laplace-Runge-Lenz (LRL) vector, resulting in the following conserved
quantity:

L2(q, p) = (eT1 p)L1(q, p)− eT2 q

‖q‖2
, (39)

where, as usual, e1, e2 ∈ R
2 are the two unit vectors.

We solve this problem, considering an eccentricity ε = 0.6, by using the following
methods:

• the symplectic 3-stage Gauss method (GAUSS3);
• the (practically) energy-conserving HBVM(12,3) method;
• the EHBVM(12,3) method (i.e., ELIM(12,12,3)) and the GHBVM(12,3) method

(i.e., LIM(12,12,3)) in [3], where it is imposed only the (practical) conservation
of the angular momentum (38) besides the Hamiltonian (37);

• the EHBVM(12,3) and GHBVM(12,3) methods as above, where it is imposed
both the (practical) conservation of the angular momentum (38) and of the LRL
vector (39) besides the Hamiltonian (37).

In Table 1 we list the measured errors after 10 periods, thus confirming that, accord-
ing to Theorem 5, all methods are sixth-order. Moreover, in Table 2 we list the
maximum norm for the vector α̂ defined in (33), over the same interval, for the
EHBVM(12,3) method:

• by imposing only the conservation of the angular momentum besides the
Hamiltonian. Here, α(1)

h = maxn=1,..., T
h
‖α̂n‖∞;

• by imposing both the conservation of the angular momentum and of the LRL
vector besides the Hamiltonian. As before, α(2)

h = max
n=1,..., Th

‖α̂n‖∞.

2We recall that [3] LIM(k, k, s) ≡GHBVM(k, s), and (see Definition 1) ELIM(k, k, s) ≡EHBVM(k, s).
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Fig. 1 Components of the vector α̂ for the fully conservative EHBVM(12,3) method, h = π/30

The obtained results confirm that the entries of the vector α̂ are actually O(h2),
as predicted by Theorem 2. For sake of completeness, in Fig. 1 we plot the two
components of the vector α̂ in the second case, when a step-size h = π/30 is used:
their periodic behavior, in accordance with that of the solution, is clearly evident.

In order to compare the computational costs of EHBVM(12,3) and GHBVM
(12,3), in Table 3 we also list the total number of fixed-point iterations needed for
solving the discrete problems generated when computing the results listed in Table 1.
From Table 3, one sees that GHBVM(12,3) requires approximately the same num-
ber of iterations as those needed by GAUSS3 and HBVM(12,3) methods (this fact
was already known from [3]), whereas EHBVM(12,3) requires some extra iteration,
which increase with the number of conserved invariants. However, according to (36)

Table 2 Quadratic convergence of the maximum norm of the vector α̂, for the Kepler problem, by using

the EHBVM(12,3) method, when imposing only the angular momentum conservation
(
α
(1)
h

)
, and both

angular momentum and LRL vector conservation
(
α
(2)
h

)

h α
(1)
h order α

(2)
h order

π/30 4.530e-3 – 1.246e-2 –

π/60 1.155e-3 2.0 3.195e-3 2.0

π/120 2.902e-4 2.0 8.040e-4 2.0

π/240 7.265e-5 2.0 2.013e-4 2.0

π/480 1.837e-5 2.0 5.055e-5 2.0
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Table 3 Total number of fixed-point iterations for solving the discrete problems when using the 3-stage
Gauss method (GAUSS3), HBVM(12,3) method, and EHBVM(12,3) and GHBVM(12,3) with only angu-
lar momentum conserved (EHBVM1(12,3) and GHBVM1(12,3), respectively), and with both angular
momentum and LRL vector conserved (EHBVM2(12,3) and GHBVM2(12,3), respectively)

h GAUSS3 HBVM EHBVM1 GHBVM1 EHBVM2 GHBVM2

(12,3) (12,3) (12,3) (12,3) (12,3)

π/30 6705 6775 7256 6779 7474 6781

π/60 11147 11244 12691 11247 13407 11249

π/120 19085 19343 21664 19339 23012 19348

π/240 33876 34752 37511 34743 39117 34753

π/480 61501 61959 65125 61967 68217 61970

one fixed-point iteration for GHBVM(12,3), when preserving ν invariants besides
the Hamiltonian, costs

2 + ν

1 + ν
, ν = 1, 2,

times than that of the corresponding EHBVM(12,3) method. This, in turn, shows that,
for the considered problem, EHBVMs are more efficient than GHBVMs.

At last, concerning the conservation of the invariants, by using a constant step-
size h = 0.1, we have solved the problem over the interval [0, 103], obtaining the
following results:

• concerning the conservation of the Hamiltonian (37), all methods are (practi-
cally) energy-conserving, except the symplectic 3-stage Gauss method. However,
the Hamiltonian error turns out to be bounded, as expected, as confirmed by the
plot in Fig. 2;
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Fig. 2 Hamiltonian error by using the 3-stage Gauss method, h = 0.1
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Fig. 3 Angular momentum error by using the HBVM(12,3) method, h = 0.1

• concerning the conservation of the angular momentum (38), all methods con-
serve this invariant, except HBVM(12,3). However, the error appears to be
bounded, as is shown in Fig. 3;

• concerning the conservation of the LRL vector (39), all methods exhibit a drift,
except EHBVM(12,3) and GHBVM(12,3), when this invariant is required to be
conserved, as is shown in Fig. 4. In particular: the drifts of the GAUSS3 and
HBVM(12,3) methods are practically the same. Both of them are slightly larger
than that shown by the GHBVM(12,3) method which is, in turn, larger than that
of EHBVM(12,3) method, when only the invariants (37) and (38) are imposed to
be conserved.3

5 Conclusions

In this paper, we have used the technique of discrete line integrals introduced by
Iavernaro and Pace [26] to define an extension of the energy-conserving meth-
ods named HBVMs, in order to cope with the conservation of multiple invariants
for Hamiltonian problems. This has resulted in an “enhanced” version of the Line
Integral Methods (LIMs) introduced in [3]. Consequently, we have named the new
methods Enhanced Line Integral Methods (ELIMs). The analysis of such methods
has been carried out, proving that the original order of HBVMs is retained by the new
methods. At last, a few numerical tests clearly confirm the theoretical findings.

3These results agree with the analysis in [15].
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