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1. Introduction

The NLS equation with wave operator was presented in [1], when considering the nonlinear interaction of monochro-
matic waves. The same equation can also be deduced in discussing the problem of soliton in plasma physics. In this paper,
the following periodic initial value problem of NLS equation with wave operator is considered:

Uy — U + o + Plulfu=0, xeR 0<t<T, (1)
u(x,0) =up(x), u(x,0)=uy(x), x€eR, (2)
ux+Lt)=uxt), xeR 0<t<T, (3)

where u(x, t) is a complex function, «, 8 are two real constants, L is the period, and =1
To solve the periodic initial value problem (1)-(3), we restrict it on a bounded domain (—4,%). Computing the inner prod-
uct of (1) with u, and then taking the real part, the conservation law is obtained as

L
2 2 B (7 4
Il + B, + 5 [ lufax = corst

The finite difference scheme in [2] is an implicit nonconservative one which needs lots of algebraic operators. An explicit
conservative finite difference scheme was constructed in [3], but which is conditionally stable. It is known that the conser-
vative schemes are better than the nonconservative ones. Zhang et al. found that the nonconservative schemes may easily
show nonlinear blow-up when they study for NLS equation, so they presented a conservative difference scheme in [4]. Then,
in [5-12] the conservative finite difference schemes were used for a system of the generalized NLS equations, Regularized
long wave equations, Sine-Gordon equation, Klein-Gordon equation and Zakharov equations, respectively. Numerical re-
sults of all the schemes are very good. However, in [3,13] the convergence order of all the schemes about the NLS equation
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with wave operator is O(h? + 72). Recently, Wang presented compact finite difference scheme for the NLS equation in [14], it
provides us a new thinking on the theoretical proving about compact difference scheme. The purpose of this paper is to con-

struct a compact conservative difference scheme for the NLS equation with wave operator.

This paper is organized as follows. A new conservative scheme is proposed in Section 2. The discrete conservation law of
the difference scheme is discussed in Section 3. In Section 4, the prior estimations for numerical solutions are made. In Sec-
tion 5, the convergence and stability for the new scheme are proved. In the last section, an iterative algorithm and numerical

results will be discussed.

2. Finite difference scheme

In this section, we describe a new difference scheme for problem (1)-(3). For convenience, the following notations are

used:

witl —wr
Swj = %, oWl =

witt—wit wh, —w] W — Wi
T h

n Jj+1 n
OxW; i W =

2

. 1 h 1
W] = O] = (W 20 W), A = W] 0w (W) 10W] ).

where h :]L and 7 =L are step sizes of space and time respectively, and J, N are two positive integers.

For any a,b € V;, = {V|v = (2o, v1,..., 71)"}, we define the inner product as
=1
(a,b) = hZajbj.
=0

Also, we define norms as

o oxv] = .
0<j<J-1

J-1

2
Ry I, (vl = max |z,
=0

In the paper, we define {U} as the exact solution and {uf'} as the numerical one. C denotes a general positive constant which

J

may have different values in different places. For the exact solution of problem (1)-(3), there exists the following inequality:

max{||U"[|, [&U"], U"|..} <C.

Now, we present the following compact finite difference scheme for problem (1)-(3):

un+1 n-1 ) up+1+un—1 )
Ahafuy—ai%ﬂomhaiuﬁgm (1 4 ) S| =0, =01 ]~ 1
n=12,...,N-1,

U;):Uo(xj)7 5fuj€):ul(xj)7 j:Osla"'7]_17

Ujy = Uj.
Suppose
T
u" = (ug, uf,....u' ),

|un+1 |2 + |un—1

2 4 12 _1p2 12 12
|” = diag(jug™ " + |ug ™[, .. [ [T+ S ).

(4)-(6) can be written as

n+1 n-1 n+1 n-1
Mo2u" 5§%+ ioMosu" +§M(\u”“ 24t ﬁ% —0, n=1,2,...,N—1,
where
10 1 0 0 1
1 10 1 0 0
1 .

M= 5

0 0 1 10 1

1 0 0 1 10
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Obviously, M is a symmetric positive definite matrix and there is a symmetric positive definite matrix H such that H=M"",
So the scheme (4)-(6) is equivalent to the following vector form:

n+1 n-1 n+1 n-1
s fﬂéﬁ%jtioc&fu” +§(|u”“\2 + \u”ﬂﬂ% —0, n=1,2,...,N—1, (7)
u_? :uo(xj)/ (Sfu]():ul(xj)' ]:07177‘]717 (8)
Ujyy = U;. 9)

3. Discrete conservation law of the new scheme
To obtain the discrete conservation law, we introduce the following lemmas:

Lemma 3.1. For any two mesh functions u,v € V,, and satisfied (6), there is the identity

J-1 J-1
WYy _(oxup) 25 = —hY_(0:) (34 ).
j=0 j=0
Proof.
J-1 , 1
h) (5u)7; = h (Ujs1 — 2Uj + Uj1) ZUJH v — h ZUJH Vi1 — hzu} v+ n Z”} Vi1
j=0 Jj=0 j=1 j=—1
148 1& 1L 18
= HZUJH v — ZUJH Vi — UoBo + 12y — > uiz; + B D WD U Do — U Ty
Jj=0 j=0 =0
14 = J-1 )
“n Ujs1 (D) = Djya) + Z (Vi1 = 1) = —h)_(0x1)(0x7j).
=0 j=0 j=0

This completes the proof of Lemma 3.1. O

Lemma 3.2. For all mesh functions {u"} satisfied (6), the following equalities hold:

Re(s7u", u™" —u") = | ou"|* — [|gu" "%,

Re((s)l((unﬂ +un—l)7un+] 7un 1) (H5 un+1|| ||5Xun—1H2)_
Proof.

1
Re(éfu”, u11+1 —u" l) Re( n+1 _2u'+ un—lﬁun+1 _ un—l)

:%Re«u"“ ) (), () () = ()

2 N —12
= [|ocu™||* — [lou™ ",

RE((f‘ (unﬂ + un—l)’ unH _ un—l) — _Re(éx(unﬂ + un—])7 5x(un+l u' 1)) (”5 unH H Héxun—l HZ)

This completes the proof of Lemma 3.2. O

Lemma 3.3 [14]. For any real symmetric positive definite matrices H, we can get
Re(Héf(u"“ +un—l)’un+1 —u* 1) (HR(S n+lH ||R5xun—1H2)7
where R is obtained by Cholesky decomposition for H, denoted as R = Chol(H).

Theorem 3.1. The difference scheme (4)-(6) admits the following invariant:
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1 X
B = 6" + o (R [+ [Raar"|?) + (a3 + 07 ) = const.

Proof. Computing the inner product of (7) with u™*! —u™*!, and then taking the real part,we get

L-L+L+14=0,
where

I = Re(s2u™, u™! —u" 1) = ||s,u"|* — [|6u™ 1%,

I = 5 Re(HS (0™ + w'™") ™! —w'™") = ([Rou™™' | — R ),

o

I3 = Re(iadu", u"™! —u™1) = T

Im(un+1 _ un—] , un+1 _ un—]) _ 07

L = DRe((u P )t ), ) = ),

We can obtain

a1 Ly B §
| = flou™ 1|* + 5 (IRew™ | — [Roqu™ %) + 7 (Ju 3 — u™|3) = .
Let
1
B = o7 + 5 (IRs™ P+ [Roa'|?) + B (o=t + ). (10)
Then E" = E"' = ... = E® = const.

This completes the proof of Theorem 3.1. O

4. The prior estimations for the numerical solution
In this section, we will estimate the difference solution. First, some lemmas are introduced.

Lemma 4.1 (Discrete Sobolev’s inequality [15]). Suppose that {u;} is mesh functions. Given ¢ > 0, there exists a constant C
dependent on ¢ such that
l[ull. < efjux]l + Cllull.

Lemma 4.2 (Gronwall’s inequality [16]). Suppose that the nonnegative mesh function {w(n), p(n),n=1,2,...,N, N, = T} sat-
isfy the inequality

n
w(n) < p(n) + 1> _Bw(l),
=1
where B(l = 1,2,...,N) are nonnegative constant. Then for any 0 < n < N, there is

N
w(n) < p(mjexp(nty_B).
=1
Lemma 4.3 [3]. For any mesh functions {u"}, there is
1
™ * = o) < o]l eu”? +§(Hu"H2 + ).

Lemma 4.4 [14]. For any real symmetric positive definite matrices H, there exists two positive numbers Co, Cy, S.t.

Collu"|* < (Hu",u") < Cy [[u"|.

Lemma 4.5. Suppose that uy(x) € Hy, ui(x) € Ly, > 0, then the following estimates hold:
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[u' <C o <C, o <C.

Proof. From (10), we get
1 .

B = o[+ 5 (IRow™ P+ [Roar'|?) + B (ot + ) =

so we have
. 1 .

e + 5 (RS | + [Rou"|[*) < C.

From Lemma 4.4, we get

HR&XU’H] ”2 _ (H(lelnﬂ,éxllnﬂ) > C0H5xun+] HZ

So we can obtain

o + 2 o |7 + oar'|) < C.
From Lemma 4.3, we have

™ ? =t < f{\léru”llz Jr%(\lu"ll2 + [ur )|
Summing up for n, we know

(1-3) I 17 < ) +r§<u5ru’<n2 + o).
Adding (12) to (11), we get

C
e + =

n
s 12 n)|2 ~ N2 < k(2 k|2
o™ 1 4 o) + (1= 5) a1 < C-+7CO (I + o).
According to the Lemma 4.2, the lemma holds when 7 is small enough. O

Corollary. If the conditions of Lemma 4.5 are satisfied, then,
[u*], <C.

Proof. According to the Lemma 4.1 and Lemma 4.5, the corollary follows. O

5. Convergence and stability of the difference scheme
Assume that the truncation error
R" = (R},R],....R ) € Vy,
then we have
5 w +iog;U" + g (U2 U

According to Taylor’s expansion, it can be easily obtained that

Un+1 + Un—l

R"=0U"—H 5

Lemma 5.1. Assume that u(x,t) € C®3, then the truncation error of the scheme (4)—(6) is of order O(h4 + 12).

3191

(11)

(12)

(13)

Theorem 5.1. Suppose that the conditions of the Lemma 4.5 and the Lemma 5.1 are fulfilled, then the numerical solution of the

scheme (4)-(6) converge to the solution of the problem (1)-(3) with order O(h4 +12) by the || - ||, norm.

Proof. Let
e'=U"-u".

Subtracting (7) from (13), we obtain
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UI’H»] + Un—l
2

un+1 + un—l

en+1 en—l
2 e 4 .

Rn _ 5?6” _H 5 4 iuéfe” +§ (‘UHH |2 + ‘Un—l |2) _ (|un+1‘2 + ‘un—l |2) (14)

Computing the inner product of (14) with J;e", and taking the real part, we get
Re(R", (5;9") =Is—Ig+1; + 13,
where

1 _ 1 0 2 _1y2
Is = Re(57e", 5;e") :ZRe(éfeﬂe”“ —e' ) :Z(H(’te"” — |15 %),

Is = ‘:—TRe(Hb‘f(e"*l +et ) e et = —41—1_(||R(>‘xe"+1 I” - IRa.e™ 1%,

I; = Re(iod;e", 5;e") = oIm(5;e", 5;e") = 0,

Un+l Un—l unﬂ un—1 N
L (P ) e

2 2

18 — gRE ((lun+l|2 + |Un—1 ‘2)

en+1 + en—1
2

en+1 en—l
) 4 hRe(I(U U = (w1 )

n+1 n-1
U ) = o ) e

_ ERC ((|Un+1 ‘2 + |Un—1 ‘2)

N

un+1 +un—1
- 5e").

7& n+1,2 n-12
= SRe((U™P + U .

We can obtain
. 1 . o 1 _
Re(R", 5;e") :Z—T(HM”HZ — [|oe™ 1) +47.(|\R<3xe'”]ll2 L

n+1 n—1
+ORe((UP 4 U T e
B
"2

n+1 n-1
Re([(\U““ P U = () «sfe"), (15)

where

Re(R", 5;e") = 1Re <R”,

en+1 _ en—l 1
e =)

B

jRe (

) =5 Re®R".5e" + ") < C(IR| + [l5ce"|” + |oe™ "),

2 8
< C(le™ M * + e |1* + e |* + [|oe" %),

n+1,2 n-1,2 enH +en—l S all ﬁ n+1,2 n-1,2 n+1 n—-1 n n-1
UTT T+ U ) ——=——, 5" | = cRe((JU™ "+ U [)(e"" +e" "), 5" + 0" ")

Re

N

n+1 n-1
(PP U1 ) = (o) e

Re([(JU™'[* + U '%) — (ju™ T+ ot T )J T ut ), e 4 s )

= O™ —/~

_ 7R€([Un+1én+] +en+1ﬁn+1 +Un—1én7] + en—lﬁn—l](unﬂ + un—1)75[en + 5[en—l)

o]

< C(le™ ™ * + [l [1* + o€ + [|5e™ " ?).
From Lemma 4.3, we have
1 2 ) 12 2 12
(L e HIE) < C(lloee™ 1F + (e + lle™ ).

So we can obtain
1

5z

< CUIRM® + [|0c€™]* + loce™ 1 + [[e™|* + [[e"]* + [le"|?). (16)

1 1
|ce”|* — [|oe"||%) + 77 (IRoe™! I — [Roe™"|1%) +;(H9”H2 —[le" %)

Summing (16) up for n, we get
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2 12
Héte”l\ +2 (||R5xe”“|| + [IRo.e"|*) + [le"|* < [o(h* +TCZ{ o€ + (RSe[| + [Roe’[[*) + €]

According to the Lemma 4.2, when 7 is small enough, it is follows that

5 Héte I+ (IIRéxer‘“II +[IRoxe"|?) + [le"]|* < [0(h" + %)%,
From Lemma 4.4, we obtain

[RS,€™||* = (Ho.e™ !, 5,e™ 1) = Collo,e™ |2
So we can get

%Héte”l\z + C(love™ | + [ove"*) + le"* < [O(h + )P
Then

el < O(h* + 7%, [lae"| < O(h* +172), [|éxe"| < O(h +72). (17)
Lastly, according to the Lemma 4.1, it is follows that

el < O(h* + 7). (18)
Then the convergence is proved. O

Similarly, we can prove the stability of the difference solution. i.e.

Theorem 5.2. Under the conditions of Theorem 5.1, the solution of the difference scheme (4)-(6) is unconditionally stable for ini-
tial data by the || - ||, norm.

6. Algorithm and numerical experiment

In this section, we take o = 8 =1, L = 80, and consider the following problem:
Up — Uy + iU+ [ufu=0, —40<x<40, 0<t<T, (19)
u(x,0) = (1+i)xe 109" y,(x,0) =0, —40 < x < 40. (20)

6.1. Iterative algorithm
For problems (19),(20), we have the following difference scheme

%Ah( P2 ) - ot )+ LA, (! — -*‘)+%Ah3f“:o, j=01,....J-1,n
=1,2,...,N-1, 21
where
B = (P P ), j=0,1,. ) -1
And the vector form of the scheme is

2 - i
ﬁ(unﬂ —2u® _,'_unfl) _Hbi(unﬂ +un71) _,'_%(unﬂ _unfl) +

%B”“:O, n=1,2...,N-1, (22)

where
B = (BB BT = (T P ),

Obviously, the scheme (21) is an implicit and nonlinear one. In order to obtain the numerical solution {uj“}, an iterative
algorithm can be used.
Let

B]zjﬂ(s):(‘ n+1 |+‘un1‘)( n+1(s) +u" 1)7 j=0,1,....0-1, s=0,1,2,...,

we define the following iterative algorithm
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2 n+1(s+1) n n-1 $2 (o MH1(s+1) n-1 i n+1(s+1) n-1 1 n+1(s)
ﬁAh(uj —2u + Ui — oy +ui ) + EAh(uj —u)+ iAth =0,

j=01,....J-1,n=12,.... N-1,s=1,2,...,
where
yo uf, n=0
i 2u'—u™', nx>1
J i
For n =0, from (5) and (21), we obtain

2 1(s+1)
=RICN 4

The vector form of the iterative algorithm (23) is

2 . i
ﬁ (un+1(s+1) —_2u" + unfl) _ Hb)z( (un+1(s+1) + unfl) + E (un+1(s+1) _ unfl) +

n=12,....N-1,s=1,2,...,

for n = 0, we have

%(u“”” —u® — Ty (x)) — HO2 (w6 — tuy (X)) + i(u; (X)) +%B“S) =0, X=(X0,X1,..,%_1).

. 1 .
—u — Ty (7)) — 2 (] Y — Tu (%)) + iAn (1 (X)) + g AnB[ =0, j=0,1,...J—1.

(23)

(24)

Theorem 6.1. Suppose that ug(x) € Hf), u(x, t) € €53, the solution of the iterative algorithm (23,24) is converged to the solution of

the scheme(4)when h and t are all small enough.

Proof. The proof of the Theorem 6.1 refers to the Theorem 5.1 in [14]. O

6.2. Numerical experiment

6.2.1. Convergence order

Firstly, we verify the convergence order of scheme (4) which is stated in Theorem 5.1. We take t = 1, and choose the
numerical solution with h = 0.0125, T = h?* as the approximate exact solution. Then we obtain the following convergence
order figure for h =0.2,0.1,0.05,0.025, T = h?. From Fig. 1, it is obvious that the scheme (4) is convergent in maximum

norm, and the convergence order is O(h* + 12).

The convergence order of the scheme(4); 1=h?
-2 T T T T

-8 | 4

y=4x

log(h)

Fig. 1. The convergence order of the scheme (4); T = h?.
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6.2.2. Comparison

In this subsection, we give the pictures of the wave propagation from t = 0 to t = 10 in Fig. 2. Here we choose three dif-
ferent step sizes with h = 0.05,0.08,0.10, T = h?, respectively. From the first three pictures, we can conclude that the wave
propagation is independent of the step sizes. The last three pictures in Fig. 2 show the movement of |U| with three different
step sizes at t = 2,5,10, respectively. The wave curves of three step sizes completely coincide with one another. Conse-
quently, Fig. 2 proves that the new scheme is not affected by grid ratios and it is suitable for long-term computation.

Then, we consider the periodic initial value problem in [2], and compare the scheme in [2] with the scheme (4). Here we
note the former as S1, and the latter as S2. Fig. 3 shows the comparison of phasic picture of U which is formed by two
schemes with different step sizes at the same time. Fig. 4 shows the comparison of |U| which is formed by two schemes with
the same step size at the different time. Both two figures demonstrate that the new scheme is effective.

h=0.05,=h’ h=0.08, :=h’

h=0.10,7=h’ t=2
07 , , ‘ ‘

— h=0.05
h=0.08
06 — — —h=0.10[1

0.5F

0.4

uf

0.3

0.2f

0.1F

0.7

0.5

— h=0.05 — h=0.05
h=0.08 0.45F h=0.08 |
06 — — —h=0.10|1 — — —h=0.10

041 1

0.5 1 035}

04f 03f

5 5 0.25f
0.3}
0.2}

02k | 0.15}

0.1F

0.1F
0.05f

Fig. 2. The wave propagation with different step sizes from t =0 to t = 10.
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h=1=0.02,t=1

Imaginary part of U

-0.05
-0.2

0.7

0.2

0.3

04 05 06

Real part of U

0.7

0.3

h=1=0.01,t=

1

0.25

o
= o
o N

Imaginary part of U
o

0.05

02 03

0.4

Real part of U

Fig. 3. Comparison of phasic picture of U: (left) h =7 =0.02, t =1 and (right) h =7t =0.01, t = 1.

06}

05}

[l

03}

02}

0.1}

-40

6.2.3. Discrete conservation law
At last,we compute the discrete conservation law. Here we choose t = 10, h = 0.05, T = h®. Table 1 shows the value of E
at different time. It indicates that the conservation of the scheme (4) is very good and it is suitable for long-term

computation.

7. Conclusion

In this paper, a compact finite difference scheme is constructed for the nonlinear Schrédinger equation with wave oper-
ator. The conservation, convergence, and stability are certified. In numerical experiment, an iterative algorithm is used to

0.5

0.6

0.7

T T T T T T 0.5 T T T T T
045}
04t
1 035}
| 03}
S 025f
| 0.2
] 0.15}
0.1}
] 0.05 |
. . . . . . . 0 . . . .
-30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10
X X
Fig. 4. Comparison of |U[: (left) h =7 =0.01, t =5 and (right) h = T = 0.01, t = 10.
Table 1
The value of E at different time with h = 0.05, 7 = h*.
t E t E
1 9.123449881568437 6 9.123449881508652
2 9.123449881550876 7 9.123449881506540
3 9.123449881535114 8 9.123449881506801
4 9.123449881522152 9 9.123449881509744
5 9.123449881513384 10 9.123449881515821

40

solve the implicit and nonlinear scheme and numerical results are carried out to confirm the theoretical proving.
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