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Abstract In this paper, a new compact finite difference scheme is proposed for a
periodic initial value problem of the nonlinear Schrödinger equation with wave oper-
ator. This is an explicit scheme of four levels with a discrete conservation law. The
unconditional stability and convergence in maximum norm with order O(h4 + τ 2)

are verified by the energy method. Those theoretical results are proved by a numerical
experiment and it is also verified that this scheme is better than the previous scheme
via comparison.

Keywords Nonlinear Schrödinger equation · Wave operator · Four-level explicit
scheme · Conservation · Convergence · Stability

1 Introduction

The NLS equation with wave operator was presented in [1], when considering the
nonlinear interaction ofmonochromaticwaves. The same equation can also be deduced
in discussing the problem of soliton in plasma physics. The aim of this work is to
discuss the following periodic initial value problem of the NLS equation with wave
operator:
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utt − uxx + iαut + β|u|2u = 0, x ∈ R, 0 < t < T, (1)

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ R, (2)

u(x + L , t) = u(x, t), x ∈ R, 0 ≤ t ≤ T, (3)

where u(x, t) is a complex function, L is the period, α, β are two real constants, and
i2 = −1.

In order to solve the problem (1)–(3), we restrict it on (− L
2 , L

2 ). Computing the
inner product of (1) with ut and taking the real part, the conservation law is obtained
as

‖ut‖2L2
+ ‖ux‖2L2

+ β

2

∫ L
2

− L
2

|u|4dx = const. (4)

To the authors’ knowledge, a number of methods are proposed to solve the NLS
equation and related equations. For instance, the Adomian decomposition method
(ADM, [2,3]), the variational iteration method (VIM, [4–6]), the homotopy pertur-
bation method (HPM, [7–9]), the differential transform method (DTM, [10,11]).
Furthermore, Fatoorehchi and Abolghasemi used these methods and the improve-
ments in different areas of different equations (see [12–20]). All of the above are
semi-analytical-techniques that transform the equation into a recurrence equation for
solving. The finite difference method (FDM) is a discrete-numerical-technique. It
is able to control the error of solution in a small area by variable discretization. In
[21], a finite difference scheme is proposed, however, it is nonconservative and its
accuracy is only O(h2 + τ). It is desirable and natural to form numerical schemes
keeping special properties of original problems, such as the conservation law. Zhang
et al. presented a conservative difference scheme for the NLS equation in [22] when
they found that the nonconservative schemes may easily show nonlinear blow-up.
The conclusion is proved in the generalized NLS equations, Regularized long wave
equations, Sine-Gordon equation, Klein–Gordon equation and Zakharov equations in
[23–28], respectively. Since then, many conservative schemes for the NLS equation
with wave operator are presented in [29–32]. However, the convergence order of all
the schemes is O(h2 + τ 2), referring to Wang in [33], Li et al. presented a nonlinear
three-level iterative difference scheme and improved the accuracy order to O(h4+τ 2)

in [34]. This paper aims to construct an explicit compact difference scheme of four
levels for the NLS equation with wave operator, demonstrating its accuracy by both
theory and numerical experiment. Through the comparison of computation time and
infinite modulo error, the new scheme is verified to be better than the scheme in
[34].

The layout of the paper is as follows. In Sect. 2, a new explicit conservative
scheme of four levels is given. The discrete conservation law of the scheme is dis-
cussed in Sect. 3. The prior estimations for numerical solutions are made in Sect. 4.
In Sect. 5, the convergence in maximum norm and unconditional stability for the
new scheme are confirmed. Finally, numerical tests will be discussed in the last sec-
tion.
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A new numerical scheme for the nonlinear Schrödinger... 111

2 Description of the finite difference scheme

In this section, we propose a new difference scheme for problem (1)–(3). As usual,
the following notations are used:

x j = − L

2
+ jh, tn = nτ, Ωh = {x j |0 ≤ j ≤ J }, Ωτ = {tn |0 ≤ n ≤ N }, Ωτ

h = Ωh × Ωτ ,

where h = L
J and τ = T

N denote the spatial and temporal step sizes respectively, and
J , N are two positive integers, unj ≡ u(x j , tn), Un

j
∼= u(x j , tn).

δt V
n
j = V n+1

j − V n
j

τ
, δt̄ V

n
j = V n

j − V n−1
j

τ
, δx V

n
j = V n

j+1 − V n
j

h
,

δx̄ V
n
j = V n

j − V n
j−1

h
,

δ2x V
n
j = δxδx̄ V

n
j = 1

h2
(V n

j−1 − 2V n
j + V n

j+1),

δ2t V
n
j = δtδt̄ V

n
j = 1

τ 2
(V n+1

j − 2V n
j + V n−1

j ),

AhV
n
j = (1 + h2

12
δ2x )V

n
j = V n

j + h2

12
δ2x V

n
j = 1

12
(V n

j+1 + 10V n
j + V n

j−1).

We define the inner product and norms as

(Un, Vn) = h
J−1∑
j=0

Un
j V̄

n
j , (Un, Vn ∈ Ωn

h = {wn|wn = (ωn
0 , ω

n
1 , . . . , ω

n
J−1)

T }),

‖Vn‖p =
√√√√[p]h

J−1∑
j=0

|V n
j |p, ‖δxVn‖=

√√√√h
J−1∑
j=0

|δx V n
j |2, ‖Vn‖∞ = max

0≤ j≤J−1
|V n

j |,

and in the paper,C denotes a general positive constant whichmay have different values
in different places.

Now, we present the following four-level compact finite difference scheme for
problem (1)–(3):

1

2
Ahδ

2
t (U

n+1
j +Un

j ) − 1

2
δ2x (U

n+1
j +Un

j ) + iαAhδtU
n
j

+β

4
Ah(|Un+1

j |2 + |Un
j |2)(Un+1

j +Un
j ) = 0,

j = 0, 1, . . . , J − 1; n = 1, 2, . . . , N − 2, (5)

U 0
j = u0(x j ), δtU

0
j = u1(x j ), j = 0, 1, . . . , J − 1, (6)

Uj+J = Uj . (7)
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112 X. Li et al.

Suppose

Un = (Un
0 ,Un

1 , . . . ,Un
J−1)

T , |Un+1|2 + |Un|2
= diag(|Un+1

0 |2 + |Un
0 |2, . . . , |Un+1

J−1|2 + |Un
J−1|2).

(5) can be written as

1

2
Mδ2t (U

n+1 + Un) − 1

2
δ2x (U

n+1 + Un) + iαMδtUn

+β

4
M(|Un+1|2 + |Un|2)(Un+1 + Un) = 0, n = 1, 2, . . . , N − 2,

where M is a symmetric positive definite matrix and

M = 1

12

⎛
⎜⎜⎜⎜⎜⎝

10 1 0 · · · 0 1
1 10 1 · · · 0 0

. . .
. . .

. . .
. . .

0 0 · · · 1 10 1
1 0 · · · 0 1 10

⎞
⎟⎟⎟⎟⎟⎠

J×J

.

Considering the vector form, the scheme (5)–(7) is equivalent to the following one:

1

2
δ2t (U

n+1 + Un) − 1

2
Hδ2x (U

n+1 + Un) + iαδtUn

+β

4
(|Un+1|2 + |Un|2)(Un+1 + Un) = 0,

n = 1, 2, . . . , N − 2, (8)

U 0
j = u0(x j ), δtU

0
j = u1(x j ), j = 0, 1, . . . , J − 1, (9)

Uj+J = Uj , (10)

where H = M−1 and H is also a symmetric positive definite matrix.

3 Discrete conservation law of the new scheme

To obtain the discrete conservation law, some lemmas are required in the subsequent
analysis:

Lemma 3.1 ([30]) For any mesh functions Un, the following equalities hold:

(1) 2Re(δtUn+1, δtUn) = ‖δtUn+1‖2 + ‖δtUn‖2 − τ 2‖δ2t Un+1‖2.
(2) Re(δ2t (U

n+1 + Un), δtUn) = 1

2τ
(‖δtUn+1‖2 − ‖δtUn−1‖2)

−τ

2
(‖δ2t Un+1‖2 − ‖δ2t Un‖2).

(3) Re(δ2x (U
n+1 + Un), δtUn) = −1

τ
(‖δxUn+1‖2 − ‖δxUn‖2).
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A new numerical scheme for the nonlinear Schrödinger... 113

Lemma 3.2 ([33]) For any real symmetric positive definite matrices H, we can get

Re(Hδ2x (u
n+1 + un−1),un+1 − un−1) = −(‖Rδxun+1‖2 − ‖Rδxun−1‖2),

where R is obtained by Cholesky decomposition for H, denoted as R = Chol(H).

Lemma 3.3 ([34]) For any two mesh functions Un,Vn ∈ Ωn
h and satisfied (7), there

is the identity

h
J−1∑
j=0

(δ2xU
n
j )V̄

n
j = −h

J−1∑
j=0

(δxU
n
j )(δx V̄

n
j ).

Theorem 3.1 The difference scheme (5)–(7) admits the following invariant:

En = 1

2

(
‖δtUn+1‖2 + ‖δtUn‖2 − τ2‖δ2t Un+1‖2

)
+ ‖RδxUn+1‖2 + β

2
‖Un+1‖44 = const.

Proof Computing the inner product of (8) with Un+1 − Un , and taking the real part,
we obtain

I1 − I2 + I3 + I4 = 0,

where

I1 = 1

2
Re(δ2t (U

n+1 + Un), Un+1 − Un)

= 1

4
(‖δtUn+1‖2 − ‖δtUn−1‖2 − τ 2‖δ2t Un+1‖2 + τ 2‖δ2t Un‖2),

I2 = 1

2
Re(Hδ2x (U

n+1 + Un), Un+1 − Un) = −1

2
(‖RδxUn+1‖2 − ‖RδxUn‖2),

I3 = Re(iαδtUn, Un+1 − Un) = α

τ
Im(Un+1 − Un, Un+1 − Un) = 0,

I4 = β

4
Re((|Un+1|2 + |Un|2)(Un+1 + Un), Un+1 − Un) = β

4
(Un+1‖44 − ‖Un‖44).

We can get

1

2

(
‖δtUn+1‖2 − ‖δtUn−1‖2 − τ 2‖δ2t Un+1‖2 + τ 2‖δ2t Un‖2

)

+
(
‖RδxUn+1‖2 − ‖RδxUn‖2

)
+ β

2

(
‖Un+1‖44 − ‖Un‖44

)
= 0.

Let

En = 1

2
(‖δtUn+1‖2 + ‖δtUn‖2 − τ 2‖δ2t Un+1‖2) + ‖RδxUn+1‖2 + β

2
‖Un+1‖44.

(11)
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114 X. Li et al.

Then En = En−1 = . . . = E0 = const .
This completes the proof of Theorem 3.1. �	

4 The prior estimations for the numerical solution

In this section, the difference solution will be estimated. First, we introduce the fol-
lowing lemmas:

Lemma 4.1 ([30]) For any mesh functions Un, there is

‖Un+1‖2 − ‖Un‖2 ≤ τ

[
‖δtUn‖2 + 1

2
(‖Un‖2 + ‖Un+1‖2)

]
.

Summing up for n, we know

(
1 − τ

2

)
‖Un+1‖2 ≤ ‖U0‖2 + τ

n∑
k=1

(‖δtUk‖2 + Uk‖2). (12)

Lemma 4.2 ([33]) For any real symmetric positive definite matrices H, there exist
two positive numbers C0,C1, s.t.

C0‖un‖2 ≤ (Hun, un) ≤ C1‖un‖2.

Lemma 4.3 (Gronwall’s inequality [35]) Suppose that the nonnegative mesh function
{w(n), ρ(n), n = 1, 2, . . . , N , Nτ = T } satisfy the inequality

w(n) ≤ ρ(n) + τ

n∑
l=1

Blw(l),

where Bl(l = 1, 2, . . . , N ) are nonnegative constant. Then for any 0 ≤ n ≤ N, there
is

w(n) ≤ ρ(n)exp

(
nτ

N∑
l=1

Bl

)
.

Lemma 4.4 (Discrete Sobolev’s inequality [36]) Suppose that {u j } is mesh functions.
Given ε > 0, there exists a constant C dependent on ε such that

‖u‖∞ ≤ ε‖ux‖ + C‖u‖.

Lemma 4.5 Suppose that u0(x) ∈ H1
0 , u1(x) ∈ L2, β > 0, then the following

estimations hold:

‖Un‖ ≤ C, ‖δtUn‖ ≤ C, ‖δxUn‖ ≤ C.
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Proof From (11), we get

En = 1

2
(‖δtUn+1‖2 + ‖δtUn‖2 − τ 2‖δ2t Un+1‖2) + ‖RδxUn+1‖2 + β

2
‖Un+1‖44 = C,

So we have

1

2
(‖δtUn+1‖2 + ‖δtUn‖2) + ‖RδxUn+1‖2 ≤ C + τ 2

2
‖δ2t Un+1‖2.

From Lemma 4.2, we get

‖RδxUn+1‖2 = (HδxUn+1, δxUn+1) ≥ C0‖δxUn+1‖2.

So we can obtain

1

2
(‖δtUn+1‖2 + ‖δtUn‖2) + C0(‖δxUn+1‖2 ≤ C + τ 2

2
‖δ2t Un+1‖2. (13)

From (8), we have

δ2t Un+1 = −δ2t Un + Hδ2x (U
n+1 + Un) − 2iαδtUn − β

2
(|Un+1|2 + |Un |2)(Un+1 + Un)

= δ2t Un−1 − Hδ2x (U
n + Un−1) + 2iαδtUn−1 + β

2
(|Un |2 + |Un−1|2)(Un + Un−1)

+Hδ2x (U
n+1 + Un) − 2iαδtUn − β

2
(|Un+1|2 + |Un |2)(Un+1 + Un)

= ......

= (−1)nδ2t U1 + Hδ2xUn+1 − (−1)nHδ2xU1 + 2iα
n∑

k=1

(−1)n−k+1δtUk

+β

2

n∑
k=1

(−1)n−k+1(|Uk+1|2 + |Uk |2)(Uk+1 + Uk).

So

‖δ2t Un+1‖2 ≤ 8‖δ2t U1‖2 + C1‖δ2xUn+1‖2 + C2‖δ2xU1‖2 + 32α2n
n∑

k=1

‖δtUk‖2

+2nβ2
n∑

k=1

‖(|Uk+1|2 + |Uk |2)(Uk+1 + Uk)‖2

≤ 8‖δ2t U1‖2 + C1‖δ2xUn+1‖2 + C2‖δ2xU1‖2 + 32α2n
n∑

k=1

‖δtUk‖2

+32β2nM2
n+1∑
k=1

‖Uk‖2.
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116 X. Li et al.

Adding it to (13), we get

1

2
(‖δtUn+1‖2 + ‖δtUn‖2) + C0‖δxUn+1‖2

≤ C + 4τ 2‖δ2t U1‖2 + τ 2

2
C1‖δ2xUn+1‖2 + τ 2

2
C2‖δ2xU1‖2

+16T τ

(
α2

n∑
k=1

(‖δtUk‖2 + β2M2
n+1∑
k=1

‖Uk‖2)
)

. (14)

Since

‖δ2xUn+1‖2 ≤ 4

h2
‖δxUn+1‖2,

So
1

2
(‖δtUn+1‖2 + ‖δtUn‖2) + C0‖δxUn+1‖2

≤ C + 8(‖δtU1‖2 + ‖δtU0‖2) + 2C1r
2‖δxUn+1‖2 + 2C2r

2‖δxU1‖2

+16T τ

(
α2

n∑
k=1

(‖δtUk‖2 + β2M2
n+1∑
k=1

‖Uk‖2)
)

.

Adding (12) to (14), we have

1

2
(‖δtUn+1‖2 + ‖δtUn‖2) + C0‖δxUn+1‖2 + (1 − τ

2
)‖Un+1‖2

≤ C + 8(‖δtU1‖2 + ‖δtU0‖2) + 2C1r
2‖δxUn+1‖2

+2C2r
2‖δxU1‖2 + 16T τ

(
α2

n∑
k=1

(‖δtUk‖2 + β2M2
n+1∑
k=1

‖Uk‖2)
)

+τ

n∑
k=1

(‖δtUk‖2 + ‖Uk‖2).

Clearing it up,

1

2
(‖δtUn+1‖2 + ‖δtUn‖2) + (C0 − 2C1r

2)‖δxUn+1‖2‖

+(1 − τ

2
− 16T τβ2M2)‖Un+1‖2 ≤ C + τC

n∑
k=0

(‖δtUk‖2 + ‖Uk‖2).

According to the Lemma 4.3, the lemma holds when τ is small enough.

Corollary If the conditions of Lemma 4.5 are satisfied, then,

‖Un‖∞ ≤ C.
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A new numerical scheme for the nonlinear Schrödinger... 117

Proof According to the Lemmas 4.4 and 4.5, the corollary follows. �	

5 Convergence and stability of the difference scheme

In this section, we assume that the truncation error

Rn = (Rn
0 , R

n
1 , . . . , R

n
J−1)

T ∈ Ωn
h ,

and we have

Rn = 1

2
δ2t (u

n+1 + un) − 1

2
Hδ2x (u

n+1 + un) + iαδtun

+β

4
(|un+1|2 + |un|2)(un+1 + un). (15)

According to Taylor’s expansion, it can be easily obtained that

Lemma 5.1 Assume that u(x, t) ∈ C6,3, the truncation error of the scheme (5)–(7)
is of order O(h4 + τ 2).

Theorem 5.1 Suppose that the conditions of the Lemma 4.5 and the Lemma 5.1 are
fulfilled, then the numerical solution of the scheme (5)–(7) converges to the solution
of the problem (1)–(3) with order O(h4 + τ 2) by the ‖ · ‖∞ norm.

Proof Let

en = un − Un .

Subtracting (8) from (15), we get

Rn = 1

2
δ2t (e

n+1 + en) − 1

2
Hδ2x (e

n+1 + en)

+iαδten + β

4

[
(|un+1|2 + |un|2)(un+1 + un)

− (|Un+1|2 + |Un|2)(Un+1 + Un)
]
. (16)

Computing the inner product of (16) with δten , and taking the real part, we obtain

Re(Rn, δten) = I I1 − I I2 + I I3 + I I4,

where

I I1 = 1

2
Re(δ2t (e

n+1 + en), δten)

= 1

4τ
(‖δten+1‖2 − ‖δten−1‖2 − τ 2‖δ2t en+1‖2 + τ 2‖δ2t en‖2),
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I I2 = 1

2
Re(Hδ2x (e

n+1 + en), δten) = − 1

2τ
(‖Rδxen+1‖2 − ‖Rδxen‖2),

I I3 = Re(iαδten, δten) = αIm(δten, δten) = 0,

I I4 = β

4
Re((|un+1|2 + |un|2)(un+1 + un) − (|Un+1|2 + |Un|2)(Un+1 + Un), δten)

= β

4
Re((|un+1|2 + |un|2)(en+1 + en) + [(|un+1|2 + |un|2)

−(|Un+1|2 + |Un|2)](Un+1 + Un), δten)

= β

4
Re((|un+1|2 + |un|2)(en+1 + en), δten)

+β

4
Re([(|un+1|2 + |un|2) − (|Un+1|2 + |Un|2)](Un+1 + Un), δten).

We can obtain

Re(Rn, δten) = 1

4τ
(‖δten+1‖2 − ‖δten−1‖2 − τ 2‖δ2t en+1‖2 + τ 2‖δ2t en‖2)

+β

4
Re((|un+1|2 + |un|2)(en+1 + en), δten)

+ 1

4τ
(‖Rδxen+1‖2 − ‖Rδxen‖2) + β

4
Re([(|un+1|2 + |un|2)

−(|Un+1|2 + |Un|2)](Un+1 + Un), δten), (17)

where

Re(Rn, δten) ≤ C(‖Rn‖2 + ‖δten‖2),
β

4
Re((|un+1|2 + |un|2)(en+1 + en), δten)

= β

4
Re((|un+1|2 + |un|2)(en+1 + en), δten)

≤ C(‖en+1‖2 + ‖en‖2 + ‖δten‖2),
β

4
Re([(|un+1|2 + |un|2) − (Un+1|2 + |Un|2)](Un+1 + Un), δten)

= β

4
Re([un+1ēn+1 + en+1Ū

n+1 + un ēn + enŪ
n](Un+1 + Un), δten)

≤ C(‖en+1‖2 + ‖en‖2 + ‖δten‖2).

From Lemma 4.1, we have

1

τ
(‖en‖2 − ‖en−1‖2) ≤ C(‖δten−1‖2 + ‖en‖2 + ‖en−1‖2).

So we can get
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A new numerical scheme for the nonlinear Schrödinger... 119

1

4τ
(‖δten+1‖2 − ‖δten−1‖2 − τ 2‖δ2t en+1‖2 + τ 2‖δ2t en‖2)

+ 1

2τ
(‖Rδxen+1‖2 − ‖Rδxen‖2) + 1

τ
(‖en‖2 − ‖en−1‖2)

≤ C(‖Rn‖2 + ‖δten‖2 + ‖δten−1‖2 + ‖en+1‖2 + ‖en‖2 + ‖en−1‖2).
(18)

Summing (18) up for n, we obtain

1

4
(‖δten+1‖2 + ‖δten‖2) + C1‖Rδxen+1‖2 + ‖en‖2 ≤ [O(h4 + τ 2)]2.

From Lemma 4.2,

‖Rδxen+1‖2 = (Hδxen+1, δxen+1) ≥ C0‖δxen+1‖2.

So we can obtain

1

4
(‖δten+1‖2 + ‖δten‖2) + C‖δxen+1‖2 + ‖en‖2 ≤ [O(h4 + τ 2)]2.

Then

‖en‖ ≤ O(h4 + τ 2), ‖δten‖ ≤ O(h4 + τ 2), ‖δxen‖ ≤ O(h4 + τ 2). (19)

Lastly, according to the Lemma 4.4, it is follows that

‖en‖∞ ≤ O(h4 + τ 2). (20)

Then the convergence is proved. �	
Similarly, we can prove the stability of the difference solution. i.e.

Theorem 5.2 Under the conditions of Theorem 5.1, the solution of the difference
scheme (5)–(7) is unconditionally stable for initial data by the ‖ · ‖∞ norm.

6 Numerical experiment and comparison

In this section, some numerical tests are carried out to verify the performance of the
new scheme. We use the numerical example in [34] and compare the new difference
scheme with the one in [34]. Taking α = β = 1, L = 80, and considering the
following problem:

utt − uxx + iut + |u|2u = 0, −40 < x < 40, 0 < t < T, (21)

u(x, 0) = (1 + i)xexp(−10(1 − x)2), ut (x, 0) = 0, −40 < x < 40. (22)
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120 X. Li et al.

Fig. 1 The convergence order
of the Scheme (5)

−4 −3.5 −3 −2.5 −2 −1.5
−16

−14

−12

−10

−8

−6

−4

−2

log(h)

lo
g(

||e
n || ∞

)
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y=4x

For problems (21)–(22), we have the following difference scheme

1

2τ2
Ah(Un+2

j −Un+1
j −Un

j +Un−1
j ) − 1

2
δ2x (U

n+1
j +Un

j ) + i

τ
Ah(Un+1

j −Un
j )

+ 1

2
Ah(|Un+1

j |2 + |Un
j |2)(Un+1

j +Un
j ) = 0, j = 0, 1, . . . , J − 1, n = 1, 2, . . . , N − 1,

(23)

U0
j = (1 + i)x j exp(−10(1 − x j )

2), δtU
0
j = 0, j = 0, 1, . . . , J − 1, (24)

Obviously, the scheme (23) is an explicit four-level scheme.We can obtainU 0
j andU

1
j

from (24) easily. ForU 2
j , we use the iterative algorithm in [34]. Thus, the new scheme

(23) can be used to solve the problems (21)–(22).

6.1 Numerical experiment

6.1.1 Convergence order

Firstly, we demonstrate the convergence order of scheme (5) which is stated in Theo-
rem 5.1. We take t = 1, and choose the numerical solution (h = 0.0125, τ = h2) as
the approximate exact solution used in [34]. The following convergence order figure
is obtained with h = 0.2, 0.1, 0.05, 0.025, τ = h2. From Fig. 1, it is obvious that the
scheme (5) is convergent in maximum norm, and the convergence order is O(h4+τ 2).

6.1.2 Discrete conservation law

Secondly, the discrete conservation law is calculated with h = 0.05, τ = h2, t = 10.
Table 1 shows the value of E at different time. It indicates that the conservation of the
scheme (5) is very good and it is suitable for long-time computation.
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Table 1 The value of E at
different time with
h = 0.05, τ = h2

t E t E

1 9.123106418942955 6 9.123106418942761

2 9.123106418942822 7 9.123106418942800

3 9.123106418942237 8 9.123106418942665

4 9.123106418942228 9 9.123106418942488

5 9.123106418942465 10 9.123106418942395
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Fig. 2 Movement of |U | with different step sizes: (left) t = 2 and (right) t = 10

Fig. 3 Wave propagation with different step sizes from t = 0 to t = 10: (left) h = 0.05 and (right) h = 0.1

6.1.3 Long-time computation

Thirdly, we give the pictures about the movement of |U | with three different step
sizes at t = 2, 10, respectively. As shown in Fig. 2, we can conclude that the new
scheme (5) is not affected by grid ratios. Then, the pictures of wave propagation from
t = 0 to t = 10 are revealed in Fig. 3. Here we choose two different sizes with
h = 0.05, 0.1, τ = h2, respectively. Compared with the figures in [34], Fig. 3 proves
that the new scheme (5) is suitable for long-time computation as the one in [34].
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Fig. 4 Comparison of soliton |U | (h = 0.05, τ = h2): (left) t = 5 and (right) t = 10
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Fig. 5 Comparison of phasic picture of U (t = 1): (left) h = 0.02, τ = h2 and (right) h = 0.05, τ = h2

6.2 Comparison

In this subsection, we compare the new scheme (5) with the one in [34]. For conve-
nience, the new scheme is NS and the one in [34] is OS for short. The comparison is
proposed in three aspects: effectiveness, computation time and infinite modulo error.

6.2.1 Effectiveness

At first, the comparison of solitons |U | which are formed by two schemes with the
same step size (h = 0.05, τ = h2) at the different times (t = 5, 10) are given in
Fig. 4. Figure 5 shows the comparison of phasic pictures of U which are formed by
two schemes with different step sizes (h = 0.02, 0.05, τ = h2) at the same time
(t = 2). Both two figures certify that the new scheme (5) is effective.

6.2.2 Computation time

Then, two schemes (OS and NS) in computation time are compared. Table 2 lists the
computation time of OS and NS in different step sizes at t = 1. We can see the time
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Table 2 Comparison of the two
schemes on computation time
with t = 1, τ = h2

h 0.2 (s) 0.1 (s) 0.05 (s) 0.025 (s)

OS0.67 1.14 3.26 46.90

NS0.28 0.35 2.22 40.39

Table 3 Comparison of the two
schemes on computation time
with t = 5, τ = h2

h 0.2 (s) 0.1 (s) 0.05 (s) 0.025 (s)

OS1.28 2.80 31.33 1058.64

NS0.36 1.77 29.44 1005.66

Table 4 Comparison of the two
schemes on infinite modulo error
with t = 1, τ = h2

h 0.2 0.1 0.05 0.025

OS 0.0599 0.0041 2.5113e−04 1.4726e−05

NS 0.0290 0.0016 9.6600e−05 5.6211e−06

Table 5 Comparison of the two
schemes on infinite modulo error
with t = 5, τ = h2

h 0.2 0.1 0.05 0.025

OS 0.2085 0.0179 0.0012 7.4984e−05

NS 0.0762 0.0080 5.2179e−04 3.2597e−05

of the latter is shorter than that of the former. For long-time computation, it is obvious
that computation time of NS is shorter than that of OS from Table 3.

6.2.3 Infinite modulo error

At last, two schemes are compared in infinite modulo error. Also, we choose the
numerical solution with h = 0.0125, τ = h2 as the approximate exact solution and
calculate the infinite modulo error for t = 1, h = 0.2, 0.1, 0.05, 0.025, τ = h2. It is
indicated in Tables 4 and 5 that the error of the second line is distinctly less than that
of the first line, almost as half as the error of the first line.

7 Conclusion

In this paper, a four-level compact finite difference scheme is presented for the non-
linear Schrödinger equation with wave operator. The conservation, convergence, and
stability of the new scheme are demonstrated. Numerical tests are carried out to con-
firm the theoretical proving. In addition, the new scheme is compared with the scheme
in [34]. As for the aspect of either computation time or infinitemodulo error, numerical
results prove the new scheme is better than the scheme in [34].
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