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Abstract. We study the nonrelativistic limit of the Cauchy problem for the nonlinear Klein-
Gordon equation and prove that any finite energy solution converges to the corresponding solution
of the nonlinear Schr¨odinger equation in the energy space, after the infinite oscillation in time is
removed. We also derive the optimal rate of convergence inL2.

1. Introduction

In this paper we study the nonrelativistic limit of the Cauchy problem for the
nonlinear Klein-Gordon equation:

h̄

2mc2
ü− h̄

2m
∆u+ mc2

2
u+ f (u) = 0, (1.1)

whereu = u(t, x) : R1+n → C, f (u) = λ|u|pu with p > 0 andλ ∈ R, c is the
speed of light,̄h is the Planck constant, andm > 0 is the mass of particle. We
consider the pure power nonlinearity just for simplicity. Our arguments below
are obviously applicable to more general functionsf (·).

Rescalingt , x, u, λ andc, we can normalize the other constants ash̄ = m =
2. Before taking the nonrelativistic limitc → ∞, we consider the modulated
functionv := e−ic2tu, which obeys the following modulated equation:

v̈/c2+ 2iv̇ −∆v + f (v) = 0. (1.2)

Then we may think of the nonlinear Schr¨odinger equation:

2iv̇ −∆v + f (v) = 0 (1.3)
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as the singular limit asc →∞ of (1.2). The most important quantities of these
equations are the energy and the charge:

ENK(u) :=
∫

Rn

|u̇/c|2+ |∇u|2+ F(u)dx,

ENS(u) :=
∫

Rn

|∇u|2+ F(u)dx,

QK(u) :=
∫

Rn

|u|2+ �u̇ū/c2dx,

QS(u) :=
∫

Rn

|u|2dx,

(1.4)

whereF(u) := 2λ|u|p+2/(p + 2). ENK andQK are conserved for any solution
u of (1.2), and so areENS andQS for (1.3).

So the most natural question about the nonrelativistic limit of (1.2) is whether
any solution with finite energy and charge converges to a solution of (1.3) in the
topology induced by those quantities (H 1). However, to the best of our knowl-
edge, there is no rigorous result on this problem in the literature. Indeed, there
are a few papers on some weaker results. In [11],L2 convergence was proved
assumingH 2 convergence of the initial data in the case wheren ≤ 2 andp ≤ 2.
In [9,8], Lq convergence was shown for 2≤ q < 2n/(n − 2) assumingH 1

boundedness andL2 convergence of the initial data under the assumptionn ≤ 3
and some restrictive assumptions onp.

Here we present an almost complete answer. Namely, we will proveH 1

convergence assumingH 1 convergence of the initail data, for anyn and any
p < 4/(n− 2). Perhaps the upper boundp = 4/(n− 2) might be allowed, but
it would be a very delicate and difficult problem. Actually, we do not know even
the uniqueness of finite energy solutions for (1.3) withp = 4/(n−2) in general
case (see [2] for the wellposedness in the radial case).

As we will show later, theH 1 convergence can be rather easily shown, at
least whenλ ≥ 0, by a compactness argument. However, when we want to
investigate the nonrelativistic limit in more details, such an argument can yield
very little information. So we give another method of analizing the problem via
the Strichartz estimate applied to the associated integral equation.

Here the main idea is to adjust the space-time norms to the nonrelativistic
limit in order to get a uniform estimate. More precisely, we split the solution in
the Fourier space into the lower frequency part|ξ | < c and the higher frequency
part|ξ | > c. The lower part is shown to behave as a solution of the Schr¨odinger,
and the higher part vanishes at the rate of a certain power ofc. Then one might
be anxious about the compatibility of such a decomposition with the nonlinear-
ity, but it will be efficiently dealt with the nonlinear estimate in sum spaces of
Lebesgue-Besov type. At this step, we lose the information about the frequency
separation, but we can recover it by exploiting the∇/c-derivative gain.
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By virtue of the analysis via the Strichartz estimate, we can show the con-
vergence also in the case whereλ < 0, as long as the solution to (1.3) exists.
As another application, we will derive the optimal rate of the convergence inL2,
that is 1/

√
c.

Our main results are the following, which cover those in [11,9,8].

Theorem 1.1 Let n ∈ N and0 < p < 4/(n − 2) (if n ≥ 3). Let (ϕc, ψc) ∈
H 1 ⊕ L2, ϕ ∈ H 1, uc be the solution of(1.2)with (uc(0), u̇c(0)) = (ϕc, ψc),
andv be the solution of(1.3)with v(0) = ϕ. Denote byT ∗c andT ∗ the maximal
existence time ofuc andv, respectively. Assume that

(ϕc, ψc/c)→ (ϕ,0) in H 1⊕ L2, (1.5)

asc→∞. Then we have
lim inf
c→∞ T ∗c ≥ T ∗, (1.6)

anduc converges tov in C([0, T ∗);H 1) (locally uniform convergence in time).

It is obvious that we have the same result for the negative time direction. The
local wellposedness is well-known for (1.2) and (1.3) under the above conditions
(see [4,3]). By a priori bounds from the conservation law, we easily observe the
following: If λ ≥ 0, then we haveT ∗c = T ∗ = ∞. If p < 4/n, then we have
T ∗ = ∞ andT ∗c = ∞ for sufficiently largec (depending on the size of the initial
energy and charge).

Theorem 1.2 Let p, ϕc, ψc, ϕ, uc, v, T
∗ and T ∗c be as in the above theorem.

Instead of(1.5), assume that(ϕc, ψc/c) is bounded inH 1⊕ L2 andϕc → ϕ in
L2 asc→∞. Then, for anyT < T ∗ we have

sup
t∈[0,T ]

‖uc(t)− v(t)‖L2 ≤ O(‖ϕc − ϕ‖L2)+ q(c), (1.7)

whereq = o(1/
√
c), or more precisely,‖√cq(c)‖'2L∞ <∞, where

‖g(c)‖2
'2L∞ :=

∑
j∈N

sup
2j≤c≤2j+1

|g(c)|2. (1.8)

Moreover, for anyq(c) satisfying‖√cq‖'2L∞ < ∞, we can findϕ ∈ H 1

such that we have

lim
c→∞‖uc(t)− v(t)‖L2/q(c) = ∞, (1.9)

no matter how we chooset > 0 close to 0 and a bounded sequence(ϕc, ψc/c)

in H 1⊕ L2 satisfying‖ϕc − ϕ‖L2 ≤ q(c).
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The contents of this paper are as follows. In Sect.2, we give a generalized
Strichartz estimates for (1.2). It can be seen as a full mixture of the well-known
Strichartz estimates for the Schr¨odinger, the wave and the Klein-Gordon equa-
tions, but it does not seem a trivial combination. In Sect.3, we derive a nonlinear
estimate in sum spaces. In Sect.4, we will derive a uniform boundedness of
Strichartz type norms (which themselves depend onc). In Sect.5, we prove the
H 1 convergence. In Sect.6, we prove the 1/

√
c rate ofL2 convergence and its

optimality.
We abbreviate ‘≤ C’ to ‘ � ’, whereC is a positive constant dependent only

on n, p and any other fixed parameter (exceptc, of course). For any Banach
spaceX consisting of space-time functions and any time intervalI , we denote

‖u‖X(I) := ‖χIu‖X, (1.10)

whereχI denotes the characteristic function ofI . For any functionϕ, we denote
its Fourier transform bỹϕ = Fϕ, and denote Fourier multipliers asϕ(∇) :=
F−1ϕ(iξ)F . We denote〈a〉b :=

√|a|2+ b2, where we omitb whenb = 1.
DenoteD := 〈∇〉1. Bσ

q,r andḂσ
q,r denote the inhomogeneous Besov space and

the homogeneous one, respectively (see [1]).'σq denotes the function space of
sequences with the norm‖a‖'σq := ‖2σjaj‖'q . [·, ·]θ and (·, ·)θ,q denote the
complex and the real interpolation functors. We denote theL2 inner product by
〈·, ·〉. For any spaceX, we denote the dual space byX′. For any complex function
g, we denote byg′(z) its R-linearization atz.

2. Uniform Strichartz estimates for nonrelativistic limit

In this section, we derive Strichartz-type estimates for the linear equation:

ü/c2+ 2iu̇−∆u = f, (2.1)

where function spaces depend onc but in those inequalities we can take positive
constants independent ofc. Those Strichartz estimates describe the transition of
the space-time norms of Strichartz type along the nonrelativistic limit, from the
Klein-Gordon to the Schr¨odinger.

The following separation of frequency is essential to know that transition. Let
X andY be Banach spaces which consist of space-time functions. Letχ ∈ S(Rn)

satisfyχ̃(ξ) = 1 for |ξ | < 1 andχ̃(ξ) = 0 for |ξ | > 2. Let χ̃ c(ξ) := χ̃(ξ/c)

andχ̃c := 1− χ̃ c. We introduce the Banach spaceX |||Y with norm defined as

‖u‖X |||Y := ‖χc ∗ u‖X + ‖χc ∗ u‖Y , (2.2)

so that it measures the frequency lower than the speed of light by theX-norm
and the higher frequency by theY -norm.
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Equation (2.1) can be rewritten in the following integral equation.

u = e−ic2t

{
cos(c〈∇〉ct)+ i

c

〈∇〉c
sin(c〈∇〉ct)

}
u(0)

+ e−ic2tsin(c〈∇〉ct) 1

c〈∇〉c
u̇(0)+

∫ t

0
e−ic2(t−s)sin(c〈∇〉c(t − s))

c

〈∇〉c
f (s)ds.

(2.3)

So it suffices to investigate the operatorsK(t) := e±ic〈∇〉ct . Then we get the
following Strichartz-type estimates.

Lemma 2.1 For anyc > 0, we have

‖K(t)ϕ‖S0 ||| (W0∩K0) � ‖ϕ‖L2,∥∥∥∥
∫ t

0
K(t − s)f (s)ds

∥∥∥∥
S0 ||| (W0∩K0)

� ‖f ‖S′1 ||| (W ′
1+K ′1)

(2.4)

for any spaceSi ,Wi , andKi of the formc−µLp(R; Ḃσ
q,2) satisfying the following

conditions. Letb := 1/p andα := 1/2−1/q. All the spacesSi ,Wi andKi must
obey

−2b + nα + σ + µ = 0, 0 ≤ 2b < 1, 0 ≤ 2α ≤ 1, (2.5)

and each space should satisfy

Si : µ = 0, 2b ≤ nα, (2.6)

Wi : µ = b, 2b ≤ (n− 1)α, (2.7)

Ki : µ = (1+ 2/n)b, 2b ≤ nα, (2.8)

respectively.

We will use the corresponding estimates forH 1 solutions, which are imme-
diate from this lemma.

Proof. Denote the linear operators in (2.4) byT 1
c andT 2

c , respectively. Then we
have the following scaling property:

T 1
c ϕ = T 1

1 [ϕ(x/c)](c2t, cx), T 2
c f = T 2

1 [f (t/c2, x/c)](c2t, cx)c−2. (2.9)

From this and (2.5), it is obvious that the estimate in general case follows from
that in the special casec = 1. Then, the estimates inS |||W andS |||K reduce to
the estimate in [5, Lemma 2.1] by the well-known argument (see, e.g., [6,7]).
Thus we have only to derive the estimates fromK ′ to W andW ′ to K.

Below we will show the estimate fromW ′ toK with the following exponents:

W : (b, α, σ ) = ((n− 1)β,2β,−(n+ 1)β), (2.10)

K : (b, α, σ ) = (nγ,2γ,−(n+ 2)γ ), (2.11)
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where 0≤ 2β ≤ 1/2, 2β < 1/(n − 1), 2γ < 1/n and 0≤ γ ≤ β. This is the
borderline case in (2.7) and (2.8) with a constraintγ ≤ β. Nevertheless, we get
the estimate in the remaining cases from that in this special case, via Sobolev
embedding, interpolations with theL2 estimate and the duality argument. We
denoteW ′ =: Lp0(B ′W) andK ′ =: Lq0(B ′K). Since we are now considering only
the frequency|ξ | > 1, we do not have to distinguish the homogenous Besov
spaces from their inhomogeneous counterparts.

By the duality argument, it suffices to estimate∫∫
s<t
〈K(t − s)f (s), g(t)〉dsdt . The double integration in{s < t} can be de-

composed as follows.

∫∫
s<t

dsdtF (s, t) = C

∫ ∞

0

dr

r

∫
R

da

r

∫ a−r

a−3r
ds

∫ a+3r

a+r

dtF (s, t), (2.12)

whereC is a certain positive constant. Denote

I :=
∫ a−r

a−3r

∫ a+3r

a+r

〈K(−s)f (s),K(−t)g(t)〉dsdt. (2.13)

If we apply the Schwarz inequality to thex-integral and use theL2 estimate, then
we can not dominate the integral forr, but we get only a bound of the integrand.
We will recover its integrability by the real interpolation for bilinear operators;
this idea was inspired by [7]. We denote

J :=
∫ a−r

a−3r
K(t − s)f (s)ds. (2.14)

Applying the decay estimate in [5, Lemma 2.1] directly, we obtain

‖J‖
B
−(n+2)β
2/(1−4β),2

� r−(2n−1)β‖f ‖L1(a−3r,a−r;B ′W ). (2.15)

On the other hand, by theL2 estimate we have

‖J‖L2 � ‖f ‖W ′(a−3r,a−r), (2.16)

Interpolating between (2.16) and (2.15) by[·, ·]γ /β , we obtain

‖J‖BK
� r−(2n−1)γ ‖f ‖Lp1(a−3r,a−r;B ′W ), (2.17)

where 1/p1 := 1− (n− 1)(β − γ ). Then, by the H¨older inequality we get

|I |� rν‖f ‖Lp(a−3r,a−r;B ′W )‖g‖Lq(a+r,a+3r;B ′K), (2.18)
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for p ≥ p1, q ≥ 1 andν = 2− (n− 1)β − nγ − 1/p − 1/q. Using the Hölder
and the Minkowski inequalities, we obtain∫

da

r
|I |� rν−1‖{|t − a + 2r| < r}f (t)‖

L
p
t L

p′
a (B ′W )

× ‖{|t − a − 2r| < r}g(t)‖
L

q
t L

q′
a (B ′K)

� rν‖f ‖Lp(B ′W )‖g‖Lq(B ′K),

(2.19)

wherep ≤ p′, q ≤ q ′ and 1/p′ + 1/q ′ = 1, so that we need an additional
restriction 1/p + 1/q ≥ 1. Denoting the left hand side byH , we discretize the
integral forr as

∫ ∞

0
H

dr

r
=

∑
j∈Z

∫ 2j+1

2j

H
dr

r
, (2.20)

and denote the summand bỹHj . We have obtained

‖H̃‖'−ν∞ � ‖f ‖Lp(B ′W )‖g‖Lq(B ′K), (2.21)

whenp ≥ p1, q ≥ 1 and 1/p + 1/q ≥ 1.
Now, to get the desired estimate for‖H̃‖'0

1
, we use the following real interpo-

lation theorem for bilinear operators. This theorem is essentially due to O’Neil
[10] and formulated as below in [1, 3.13.5(b)].

Theorem 2.2 Let T be a bilinear operator,(X0, X1), (Y0, Y1), (Z0, Z1) be in-
terpolation couples of Banach spaces. Assume

‖T (f, g)‖Zi+j
� ‖f ‖Xi

‖g‖Yj , (2.22)

for 0 ≤ i, j, i + j ≤ 1. Then, for any0 < θ0, θ1 < 1 and1 ≤ p0, p1 ≤ ∞
satisfyingθ0+ θ1 < 1 and1≤ p := 1/(1/p0+ 1/p1), we have

‖T (f, g)‖(Z0,Z1)θ0+θ1,p
� ‖f ‖(X0,X1)θ0,p0

‖g‖(Y0,Y1)θ1,p1
. (2.23)

Since the point(1/p,1/q) = P := (1/p0,1/q0) is included inside the
triangle!0 := !(0,1)(1/p1,1)(1/p1,1− 1/p1), we can find another triangle
!1 = !(b2, d2)(b2, d3)(b3, d2) which is contained inside!0 and surroundsP .
Applying the above theorem to (2.21) on!1 with appropriateθ0 andθ1, we obtain

‖H̃‖'0
1
� ‖f ‖Lp0,2(B ′W )‖g‖Lq0,2(B ′K), (2.24)

whereLp,q denotes the Lorentz space. Then, by the embeddingLp ⊂ Lp,2

(p ≤ 2), we obtain the desired result. #$
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3. Nonlinear estimate in sum spaces

In this section, we derive an estimate for power nonlinearities in sum spaces
of Lebesgue-Besov type. The argument is quite standard; its complexity comes
only from the summation of the spaces. We will derive the estimate in the ho-
mogeneous Besov spaces, which together with trivial estimates from H¨older’s
inequality gives the corresponding estimate in the inhomogeneous spaces. Now
we introduce the following notation to state and prove the estimate both simply
and systematically.

Definition 3.1 We define

L0 := {αLs(R;Lq(Rn)) | α > 0,0 < s, q ≤ ∞},
L1 := {αLs(R; 'σr (Z;Lq(Rn))) | α, σ > 0,1≤ s, q, r ≤ ∞},
B := {αLs(R; Ḃσ

q,r (R
n)) | α, σ > 0,1≤ s, q, r ≤ ∞}.

(3.1)

You can see that the set of spacesαLs for t variable is pretty superfluous in the
following argument. It can be easily generalized to the set of order preserving
function spaces, but here we restrict it to the case that we need. With anyB =
αLsḂσ

q,r ∈ B, we associateπb(B) := (logα,1/s,1/q,1/r, σ ) andσ(B) := σ .
Similarly, we defineπ1(X) for anyX ∈ L1 and defineπ0(X) for anyX ∈ L0,
for which we regard as(1/r, σ ) = 0. For anyX ∈ Li andβ > 0, we define
Xβ := π−1

i (βπi(X)). For anyX in L0, anyY ∈ L1 and anyB ∈ B, we define
XY := π−1

1 (π0(X)+ π1(Y )) andXB := π−1
b (π0(X)+ πb(B)), and we denote

X̄ := π−1
b π1(X) andB := π−1

1 πb(B).
We estimate the Besov norms via difference operators. We denote thek-th

unit vector inR
n by ek. For any functionu we define

[u]k,j := |u(x + 2−j ek)| + |u(x)| + |u(x − 2−j ek)|,
δk,ju := |u(x + 2−j ek)− u(x)| + |u(x)− u(x − 2−j ek)|,
δ2
k,ju := |u(x + 2−j ek)− 2u(x)+ u(x − 2−j ek)|.

(3.2)

It is well-known that the Besov norms can be represented by the differences.
Actually, we have the following retraction fromL1 to B, which is obvious from
the usual proof of the equivalence of the norms (see, e.g., [1]).

Lemma 3.2 Define operatorsSm for m = 1,2 by

(Smf )k,j := δmk,jf. (3.3)

Then,Sm is bounded fromB ∈ B to (B)n if σ(B) < m. Moreover, there exists
a sequence{Rm

k,j } ⊂ S(Rn) satisfyingRm
k,j = 2njRm

k,0(2
j x) and the following

properties. Define operatorsRm by

Rmf :=
∑
k,j

Rm
k,j ∗ fk,j . (3.4)

Then we haveRmSmf = f andRm is bounded from(B)n toB.
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By this retraction, we have in particular the equivalence also for sum spaces
and interpolation spaces.

The following basic lemma is necessary to consider estimates in sum spaces.

Lemma 3.3 LetN ∈ N andBi , i = 1, . . . , N , be a compatible tuple of Banach
function spaces.Suppose thatwehave‖u‖Bi

≤ ‖v‖Bi
for anyi,uandv satisfying

|u| ≤ |v|. Assume|u|� ∑
i |vi |. Then we have
‖u‖∑

i Bi
�

∑
i

‖vi‖Bi
. (3.5)

Proof. Defineui as follows. If |vi(x)| > |vj (x)| for any j < i and |vi(x)| ≥
|vj (x)| for anyj ≥ i, then letui(x) = u(x). Otherwise, letui(x) = 0. Then, we
have

u(x) =
∑
i

ui(x), |ui(x)|� |vi(x)|. (3.6)

Thus we obtain‖u‖∑
i Bi
≤∑

i ‖ui‖Bi
�

∑
i ‖vi‖Bi

. #$
We introduce the following assumption about the nonlinear functiong with

a parameterp > 0. A typical example isg(u) = |u|pu.

g : C → C, g(0) = 0,

|g(a)− g(b)|� |a − b|(|a| + |b|)p,

|g′(a)− g′(b)|�
{
|a − b|(|a| + |b|)p−1, (p > 1),

|a − b|p, (p ≤ 1),

(3.7)

Now we can prove the desired nonlinear estimate.

Lemma 3.4 Let p > 0 and assume(3.7). LetXi ∈ L0 andZi ∈ B for i =
0, . . . ,3. Suppose thatσ(Zi) < min(2, p + 1) andXp

i Zi ∈ B for any i. Then
we have

‖g(u)‖∑
i X

p
i Zi

� inf
u=a+b

(‖a‖X0∩X1 + ‖b‖X2∩X3

)p (‖a‖Z0∩Z2 + ‖b‖Z1∩Z3

)
.

(3.8)

Proof. By elementary calculations, we have

|δ2
k,j g(u)|� [u]pk,j |δ2

k,ju| + [u]p−1
k,j |δk,ju|2, (3.9)

if p > 1. Substitutingu = a + b, we obtain eight terms. We estimate only two
typical terms. We omit the subindices for a while. By H¨older’s inequality, we
have

‖[a]p|δ2b|‖Xp
1 Z1

� ‖|a|p‖Xp
1
‖δ2b‖Z1 � ‖a‖pX1

‖b‖Z1, (3.10)



612 S. Machihara et al.

and

‖[a]p−1|δb|2‖[Xp
1 Z1,X

p
3 Z3]1/p � ‖|a|p−1‖

X
p−1
1
‖|δb|2‖[X3Z1,X3Z3]1/p

� ‖a‖p−1
X1
‖δb‖2

[(X3Z1)1/2,(X3Z3)1/2]1/p ,
(3.11)

where the last factor can be estimated as follows.

‖δb‖[(X3Z1)1/2,(X3Z3)1/2]1/p � ‖b‖[(X3Z1)1/2,(X3Z3)1/2]1/p
� ‖b‖1−1/p

(X3Z1)1/2
‖b‖1/p

(X3Z3)1/2

� ‖b‖1−1/p
[X3,Z1]1/2

‖b‖1/p
[X3,Z3]1/2

� ‖b‖1/2
X3
‖b‖1/2−1/(2p)

Z1
‖b‖1/(2p)

Z3
,

(3.12)

where, in the third inequality, we have used the embedding

Lq(Rn) ⊂ Ḃ0
q,∞(Rn) (3.13)

for X3. Thus we obtain a bound in[Xp

1Z1, X
p

3Z3]1/p ⊂ X
p

1Z1 + X
p

3Z3. The
remaining six terms are estimated in the same way.

If p ≤ 1, we have

|δ2
k,j g(u)|� [u]pk,j |δ2

k,ju| + |δk,ju|p+1. (3.14)

Substitutingu = a + b, we have two new terms. We estimate by H¨older’s
inequality as

‖|δa|p+1‖Xp
0 Z0

� ‖δa‖p+1

X
p/(p+1)
0 Z0

1/(p+1) . (3.15)

By (3.13) and the complex interpolation we have

X
p/(p+1)
0 Z0

1/(p+1) ⊃ [X0, Z0]1/(p+1), (3.16)

and then the interpolation inequality gives the desired estimate. The other term
is estimated in the same way. #$

4. Uniform boundedness of strichartz norms

In this section, we prove uniform boundedness of solutions for (1.2) in the
Strichatz type norms appearing in Sect.2. The procedure of our proof goes as
follows. We derive an iterative estimate for the associated integral equation (2.3)
with f = f (u). At first we have an estimate for the homogeneous term by the
result in Sect.2. It is known that such a norm is finite for any solutionuc of (1.2)
with finite energy and charge (see, e.g., [3]). So we can estimate the nonlinear
termf (uc) in sum spaces by the result in Sect.3. Since we havec/〈∇〉c in the
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inhomogeneous term, we can gain 1 derivative for the higher frequency part at
the cost ofc weight. For the lower frequency, we can gain as many derivatives
as we like, at the cost of the same power ofc. Thereby we can come back to the
frequency separated spaces, and then we get the desired closed estimate, where
the norms depend onc but the constants are independent ofc.

The precise result is the following:

Lemma 4.1 Letn,p andλ be as inTheorem1.1. LetS,K andW be as in Lemma
2.4. Then, there exist positive continuous functionsT (·) andM(·) satisfying the
following. Letc ≥ 1 andu be a solution of(1.2)with

‖u(0)‖H1 + ‖u̇(0)/c‖L2 ≤ E <∞. (4.1)

Thenu exists at least on[0, T (E)] and we have
‖Du‖S|W∩K(0,T (E)) ≤ M(E). (4.2)

Proof. First we prove the above lemma whenn ≥ 3. The other case is much
easier. We estimate the solutionu in the following spaces:

Z := S2 |||W2 ∩K1,

X := S1 |||W1,
(4.3)

whereS2, W2 andK1 are of the formc−µL1/b(R;Bσ
1/b,2(R

n)), andS1 andW1 are
of the formc−µL1/b(R1+n), with the exponentsb, σ, µ listed in Table 1.

Table 1.Exponents forn ≥ 3 (p∗ = 4/(n− 2))

u 1/2− b σ µ f (u) b − 1/2 σ µ

S1 2/(n+ 2) 0 0 S
p∗
1 S2 1/(n+ 2) 1 0

S2 1/(n+ 2) 1 0 S
p∗
1 K1 1/(n+ 2) 1/2 1/2

W1 1.5/(n+ 1) 0 = b W
p∗
1 W2 1/(n+ 1) 1/2 = b

W2 1/(n+ 1) 1/2 = b W
p∗
1 S2

2
n+1 − 1

n+2 1 2/(n+ 1)

K1 1/(n+ 2) 1/2 1/2

c〈∇〉c−1f (u) b − 1/2 σ0 σ1 µ

R1 1/(n+ 2) 1 3/2 −1/2
R2 1/(n+ 1) 1+ 1/(n+ 1) 3/2 −1/2+ 1/(n+ 1)

R3
2

n+1 − 1
n+2 1+ 2

n+1
3
2 + 1

n+2 −1
2 + 2

n+1 − 1
n+2

By the Strichartz estimate (Lemma 2.4), we have

‖v‖L∞H1∩Z∩X � ‖u(0)‖H1 + ‖u̇(0)/c‖L2, (4.4)



614 S. Machihara et al.

wherev solves the free equation ((1.2) withf ≡ 0) with the same initial data as
u. For anyε > 0, there existsCε > 0 depending only onf andε such that we
can decompose the nonlinearity asf (u) = f0(u)+ f1(u) where

|f0(u)| ≤ Cε|u|, |f ′0(u)| ≤ Cε, (4.5)

andg = f1/ε satisfies (3.7) withp = p∗ := 4/(n−2). By the nonlinear estimate
(Lemma 3.4), we have

‖f1(u)‖Sp∗
1 S2+S

p∗
1 K1+W

p∗
1 W2+W

p∗
1 S2

� ε‖u‖Z‖u‖p∗X , (4.6)

where the exponents of the spaces on the left hand side are given in Table 1, and

‖f0(u)‖L1(0,T ;H1) �CεT ‖u‖L∞(0,T ;H1), (4.7)

for anyT < T ∗c . By the regularization effect of〈∇〉c−1, we have

‖c〈∇〉c−1f1(u)‖R1+R2+R3 � ‖f1(u)‖Sp∗
1 S2+S

p∗
1 K1+W

p∗
1 W2+W

p∗
1 S2

, (4.8)

where the spacesRi are of the form

L1/bB
σ0
1/b,2 ||| c−µL1/bB

σ1
1/b,2 (4.9)

with the exponents(b, σ0, σ1, µ) given in Table 1. Combining these estimates
with the Strichartz estimate, we finally obtain∥∥∥∥

∫ t

0
e−ic2(t−s)sin(c〈∇〉c(t − s))

c

〈∇〉c
f (u(s))ds

∥∥∥∥
L∞H1∩Z∩X(0,T )

� ε‖u‖p∗X(0,T )‖u‖Z(0,T ) + CεT ‖u‖L∞(0,T ;H1). (4.10)

DenoteΩ := L∞(H 1) ∩ Z ∩X. The above estimate implies

‖u‖Ω(0,T ) ≤ ‖v‖Ω(0,T ) + Cε‖u‖p∗+1
Ω(0,T ) + CTCε‖u‖Ω(0,T ), (4.11)

as long asu exists untilt = T . If we takeε sufficiently small, which depends
only onE, and takeT (E) sufficiently small, then we obtain from (4.11),

‖u‖Ω(0,T ) ≤ 2‖v‖Ω(0,T ) (4.12)

for T < T (E), which also implies thatu can be extended untilt = T (E).
Repeating the estimate (4.11) with the left hand side replaced with any space
allowed by the Strichartz estimate, we obtain the desired result.

If n ≤ 2, then we defineΩ := L∞H 1 ∩ LqL∞, whereq > max(p,2). By
the Strichartz estimate we have‖v‖Ω �E, and

‖u− v‖Ω(0,T ) � ‖f (u)‖L1H1(0,T ) � T 1−p/q‖u‖p+1
Ω(0,T ), (4.13)

from which the desired result follows. #$
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5. H 1 convergence

Lemma 4.1 means in particular that there exists someT > 0 independent of
c such that(uc, u̇c/c) is uniformly bounded inH 1 ⊕ L2 on the time interval
t ∈ [0, T ]. So, in order to prove theH 1 convergence (Theorem 1.1), it suffices
to derive theH 1 convergence on[0, T ] under the additional assumption of the
boundedness inH 1 ⊕ cL2. Using this repeatedly on consecutive intervals, we
obtain Theorem 1.1. In particular, ifλ ≥ 0, we can prove the theorem directly
without the estimate in the previous sections, since we have a uniform global a
priori bound for theH 1⊕ cL2 norm by the energy and charge conservation.

Hence we suppose, in addition to the assumptions of Theorem 1.1, that

‖uc(t)‖H1 + ‖u̇c(t)/c‖L2 < M (5.1)

ont ∈ [0, T ] for someM <∞ independent ofc andt , and prove the convergence
(uc, u̇c/c)→ (v,0) in C([0, T ];H 1⊕ L2) via a compactness argument.

Let A ⊂ C∞0 (Rn) be an enumerable set which is dense inH−1. Then, for
anyρ ∈ A, {〈ρ, uc(t)〉}c>1 is a bounded set inC([0, T ]). The equicontinuity (for
c→∞) can be seen as follows: From the equation, we have

〈ρ, uc(t0)− uc(t1)〉 = 〈ρ,
∫ t1

t0

u̇cdt〉

= 〈ρ, i
∫ t1

t0

üc/c
2−∆uc + f (uc)dt〉/2

= 〈ρ, i(u̇c(t1)− u̇c(t0))/c
2+ i

∫ t1

t0

−∆uc + f (uc)dt〉/2,

(5.2)

so that we can estimate

|〈ρ, uc(t0)− uc(t1)〉|� c−1‖ρ‖L2 + |t0− t1|‖ρ‖H1. (5.3)

Now the Ascoli-Arzelà theorem implies that if we extract an appropriate sub-
sequence, then〈ρ, uc(t)〉 converges inC([0, T ]) for anyρ ∈ A, and souc(t)

converges inC([0, T ];w-H 1), wherew-H 1 denotes the weakly topologizedH 1.
Then it is easy to see that the limit functionu∞(t) satisfies (1.3) and the initial
conditionu∞(0) = ϕ. But the uniqueness of such solutions is well-known (see
[4]), so that we haveu∞ = v. It is indeed not an easy task to get the uniqueness
only from the finiteness ofH 1, but in our case, we have the uniform boundedness
of the space-time norms from Lemma 4.1:

‖Duc‖S |||W∩K(0,T ) ≤ N. (5.4)
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for some finiteN . Since the higher frequency vanishes inS ′(R1+n) asc →∞,
we obtain by the weak convergence,

‖Du∞‖S(0,T ) ≤ N, (5.5)

for anyS satisfying the conditions in Lemma 2.4 (N may depend onS). Then it
is quite easy to showu∞ = v.

By the conservation of charge and boundedness ofu̇/c, we have

QS(v) = lim
c→∞QK(uc) = lim

c→∞QS(uc; t), (5.6)

uniformly on[0, T ]. Thus we obtainuc → v in C([0, T ];L2). By the interpola-
tion, we also have the convergence inLp+2. Then, we have∫

|∇v(t)|2dx = lim
c→∞

∫
|u̇/c(t)|2+ |∇uc(t)|2dx, (5.7)

uniformly on[0, T ]. On the other hand, the uniform weak convergence implies
that, for anyε > 0, there existsc0 such that∫

|∇v(t)|2dx ≤ inf
c>c0

∫
|∇uc(t)|2dx + ε (5.8)

for anyt ∈ [0, T ]. These two facts make us conclude that

‖u̇c(t)/c‖L2 → 0, ‖∇uc(t)‖L2 → ‖∇v(t)‖L2 (5.9)

in C([0, T ]), which in turn enhance the weak convergence into the desired strong
one;uc → v in C([0, T ];H 1).

Since the limit is unique, we do not need to extract any subsequence. Thus
we obtain the desired convergence result. #$

Interpolating the convergence in the energy space and the uniform bounded-
ness in Lemma 4.1, we obtain also the convergence in the space-time norms.

Corollary 5.1 Under the same assumptions as in Theorem 1.1, we have

‖D(uc − v)‖S|W∩K(0,T ) → 0, (5.10)

for anyT < T ∗ and anyS,W andK satisfying the conditions in Lemma 2.4.

Remark 5.2.If p ≥ 1, then we can prove the convergence also by such direct
estimates as in the previous section. But ifp < 1, then we can not avoid some
compactness argument more or less, because of the singularity off (·) at the
origin.
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6. L2 convergence rate

In this section, we prove the optimal rate of convergence inL2 (Theorem 1.2).
The dominant term is the free part, and in order to prove the optimality, we
employ an idea from the scattering theory to dominate the strongest term among
the nonlinear ones. Denote[a]c := (〈a〉c + c)/2 and

K±
c (t) := e−ic(c±〈∇〉c)t , (6.1)

wherec(c − 〈ξ〉c) = c|ξ |2/[ξ ]c → |ξ |2/2 andc(c + 〈ξ〉c) → ∞ asc → ∞.
Below we will often omit the subscriptc.

First we show the upper boundo(1/
√
c). We estimate the convergence in

Υ := Q∩DS2, whereQ := L∞L2 andS2 is as given in Sect.4. Defineα ∈ (0,1)
byp = αp∗ for n ≥ 3, wherep∗ = 4/(n− 2), andα := min(p,1)/3 for n ≤ 2.
We define an auxiliary spaceY := [Q,DS2]α ⊃ Υ . Hereafter, every norm fort
is taken on the interval(0, T ), which we will not write explicitly.

Let r(c) = c1/2+ε with ε > 0 sufficiently small. By the boundedness in
L∞H 1 ∩ S2 |||K1, we have

‖χr ∗ (uc, v)‖Υ = O(1/r)+O((cr)−1/2) = O(c−1/2−ε). (6.2)

Since 1− c/〈ξ〉c = |ξ |2/(2〈ξ〉c[ξ ]c), we have for any Besov or Lebesgue space
B, ∥∥(1− c/〈∇〉c)χr∗∥∥L(B)

� r2/c2 = O(c−1+2ε). (6.3)

From these estimates, we obtain

u(t)−v(t) = χr ∗R(t)ϕ+ i

2
χr ∗

∫ t

0
R(t− s)f (v(s))−K+(t− s)f (u(s))ds

+ i

2
χr ∗

∫ t

0
K−(t − s){f (u(s))− f (v(s))}ds

+O(c−1/2−ε)+O(‖ϕc − ϕ‖L2), (6.4)

in Υ , whereRc(t) := K−
c (t)− e−i∆t/2. Differentiating byc, we get

Rc(t)ϕ = −i

∫ ∞

c

|∇|4
4〈∇〉γ [∇]2γ

K−
γ (t)tϕ dγ. (6.5)

Let ϕj := χ2j+1 − χ2j

for j ∈ N andϕ0 := χ1. By the Strichartz estimate, we
obtain

‖ϕj ∗ Rc(t)ϕ‖Υ � min(1,
∫ ∞

c

24j γ−3t dγ )‖ϕj ∗ ϕ‖L2 (6.6)
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Taking the square summation forj and using the Minkowski inequality, we get

‖χr ∗ Rc(t)ϕ‖Υ � 〈T 〉 ∥∥min(1,24j c−2)‖ϕj ∗ ϕ‖L2

∥∥
'2 . (6.7)

Denote the right hand side byρ(c). Then we have

‖√cρ‖2
'2L∞ � 〈T 〉2

∑
k,j

min(2k−2j ,2−3(k−2j))22j‖ϕj ∗ ϕ‖2
L2 � 〈T 〉2‖ϕ‖2

H1.

(6.8)

Applying the Strichartz and the nonlinear estimates tof (v) as in Sect.4, we
obtain in a similar way,∥∥∥∥√c

∫ t

0
χr ∗ Rc(t − s)f (v(s))ds

∥∥∥∥
'2L∞c (Υ )

<∞. (6.9)

Integrating by parts, we get

− i

2
χr ∗

∫ t

0
K+(t − s)f (u(s))ds = χr ∗ [[∇]−1

c K+(t − s)f (u(s))/c
]t

0

− χr ∗
∫ t

0
[∇]−1

c K+(t − s)f ′(u(s))u̇(s)/c ds. (6.10)

Then the first term can be estimated as

‖χr ∗ [∇]−1
c K+(t − s)f (u(s))/c‖Lq � c−2r1+n(1/2−1/q)‖f (u(s))‖H−1, (6.11)

from which we obtain a bound ofo(c−1+2ε) in Υ . For the second term, we first
consider the case wheren ≤ 3. We have

u ∈ L
p0
t L∞x + c−1/p0L

p0
t Lp1

x =: B, (6.12)

wherep0 := max(3, p), 1/p1 := 1/2− (1+ 1/p0)/n for n = 3 andp1 = ∞
for n ≤ 2. Since|f ′(u)|� 1+ |u|p0, we have

‖χr ∗ f ′(u)u̇/c‖L1L2 � ‖f ′(u)u̇/c‖L1L2+c−1L1Lp2 � (T + ‖u‖p0
B )‖u̇/c‖Q,

(6.13)

where 1/p2 := 1/2+p0/p1 < 1/2+1/n. So the second term on the right hand
side of (6.10) is bounded byO(1/c) in Υ . If n ≥ 4, we have

‖f ′(u)u̇/c‖Lp0
t L

p1
x

� T 1/p0‖u‖p
L∞t L

2n/(n−2)
x

‖u̇/c‖L∞t L2
x
, (6.14)

where 1/p0 := 1− α/2 and 1/p1 := 1/2+ 2α/n. So we have

‖χr ∗ [∇]−1
c f ′(u)u̇/c‖Lp0Bα

p1,2
= O(c−1+α(1/2+ε)). (6.15)

Then, the Strichartz estimate yields the same order for (6.10) inΥ .
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Thus we have obtained

u(t)− v(t) = i

2

∫ t

0
χr ∗K−(t − s){f (u(s))− f (v(s))}ds + o, (6.16)

in Υ , whereo = q(c)+O(‖ϕc − ϕ‖L2) and
√
cq(c) ∈ '2L∞.

The remaining nonlinear term is estimated by H¨older’s inequality and the
Strichartz estimate as

‖u− v‖Υ � T 1−α‖χr ∗ (f (u)− f (v))‖[Q,DR1]α+[Q,DR3]α + o

� T 1−α‖(u, v)‖pX‖u− v‖Y + o,
(6.17)

if n ≥ 3. SinceΥ ⊂ Y and‖(u, v)‖X is bounded, we obtain

‖u− v‖Υ � o, (6.18)

if we takeT sufficiently small. Repeating this argument, we can extend this result
for anyT < T ∗.

If n ≤ 2, then by Hölder’s inequality and the Strichartz estimate we have

‖u− v‖Υ � ‖f (u)− f (v)‖L1L2 + o� T 1−α/2‖(u, v)‖pLqLq‖u− v‖Y + o,

(6.19)

whereq := (n+2)p/α > 2(n+2)/n. Since‖(u, v)‖LqLq is bounded, we obtain
the desired upper bound as in the casen ≥ 3.

Next we prove the optimality. Letqj := sup22j<c<22j+1 q(c). Since 2j qj ∈ '2,
we can findq ′ satisfying 2j q ′j ∈ '2 and limj→∞ q ′j /qj = ∞.The above argument
implies that it suffices to chooseϕ such that

u− v = i

2

∫ t

0
χr ∗K−(t − s){f (u(s))− f (v(s))}ds +R, (6.20)

with ‖R‖Y � q(c) and inf22j<c<22j+1 ‖R(t)‖L2 � q ′j . Now we have only to get
the same order for the free partI0 := R(t)ϕ and to dominate the nonlinear term
I1 :=

∫ t

0 R(t − s)f (v(s))ds in Υ , for the above arguments show that the other
terms decay faster.

First we findϕ satisfying

inf
22j<c<22j+1

‖I0(t)‖L2 � q ′j . (6.21)

Define ϕ ∈ H 1 by ϕ̃(ξ) := q ′j for 2j ≤ |ξ | < 2j+1.Then we have
‖ϕ‖H1 � ‖2j q ′j‖'2, and (6.21) follows from

|FI0| = |ei|ξ |4t/(4[ξ ]2c ) − 1||ϕ̃(ξ)|� |ξ |4t/[ξ ]2c |ϕ̃(ξ)| (6.22)

for |ξ |4t/[ξ ]2c < 1.
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Next we reduce the space-time norms ofv andf (v) by the following lemma.

Lemma 6.1 LetS = Lq(Bσ
r,2) satisfyq <∞ and the conditions in Lemma 2.4.

Then, for anyϕ ∈ L2, anys > 0, anyT < ∞ and anyε, we can findψ ∈ L2

satisfying

‖DsU(t)ψ‖S(0,T ) + sup
c>1
‖Dsχc ∗K−

c (t)ψ‖S(0,T ) < ε, (6.23)

whereU(t) := e−i∆t/2, and

|ψ̃(ξ)| ≡ |ϕ̃(ξ)|. (6.24)

Proof. DenoteUc(t) := χc ∗K−
c (t). First we show that for anyϕ ∈ L2 we have

sup
c>1
‖Uc(t)U(τ)ϕ‖S(0,T ) → 0, (6.25)

asτ →∞. Since the above supremum is bounded by‖ϕ‖L2, it suffices to show
this convergence wheñϕ ∈ C∞0 . Then, by the stationary phase method, we have

‖U(τ)Uc(t)ϕ‖Bσ
r,2

� τ−n(1/2−1/r), (6.26)

so that we obtain (6.25).
Now defineϕj ∈ L2 by ϕ = ∑

j≥0 ϕj , suppϕ̃j ⊂ {2j ≤ |ξ | ≤ 2j+1} and
suppϕ̃0 ⊂ {|ξ | ≤ 1}. Let ψj := U(Tj )ϕj andψ := ∑

j≥0 ψj , whereTj > 0
should be chosen sufficiently large. Then (6.24) is obvious. Moreover, we have

‖DsUc(t)ψj‖S(0,T ) � 2sj‖U(Tj )Uc(t)ϕj‖S(0,T ), (6.27)

which tends to 0 asTj →∞, uniformly for c > 1. For example, we can choose
Tj so large that (6.27) is smaller than 2−3−j ε. Hence we obtain the desired result
by the triangle inequality. #$

We chooses ∈ (0,1)satisfyings < p. If n ≥ 3, then letY1 := (D−s−1Y )∩S1.
By the above lemma, for anyε > 0, we can replaceϕ ∈ H 1 without violating
(6.21) such that we have

‖U(t)ϕ‖Y1 < ε. (6.28)

Then the nonlinear and the Strichartz estimates yield

‖v‖Y1 � ε + T 1−α‖v‖p+1
Y1

. (6.29)

Sincep > 0, if we chooseε sufficiently small depending onT andp, the above
inequality implies a bound� ε for the left hand side. Then, from (6.5) and the
Strichartz estimate, we obtain

‖χr ∗ I1‖Υ � r3−sc−2T 1−α‖f (v)‖[L∞H1+s ,D−sS
p∗
1 S2]α (6.30)

� r3−sc−2T 1−α‖v‖p+1
Y1

= O(c−2+(3−s)(1/2+ε)) = o(c−1/2−ε).

Thus we have obtained the desired optimality.
If n ≤ 2, we putY1 := (D−s−1Y ) ∩ Lq(R1+n), whereq is the same as in

(6.19). Then, by the same argument, we obtain the desired optimality. #$
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