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Abstract. We study the nonrelativistic limit of the Cauchy problem for the nonlinear Klein-
Gordon equation and prove that any finite energy solution converges to the corresponding solution
of the nonlinear Scludinger equation in the energy space, after the infinite oscillation in time is
removed. We also derive the optimal rate of convergende?in

1. Introduction

In this paper we study the nonrelativistic limit of the Cauchy problem for the
nonlinear Klein-Gordon equation:

hoo. h mc?
ot~ %Au—FTu%—f(u) =0, (1.1

whereu = u(t, x) : R — C, f(u) = Alu|Pu with p > 0 andr € R, c is the
speed of lightf: is the Planck constant, amd > 0O is the mass of particle. We
consider the pure power nonlinearity just for simplicity. Our arguments below
are obviously applicable to more general functigits).

Rescaling, x, u, A andc, we can normalize the other constantéias m =
2. Before taking the nonrelativistic limit — oo, we consider the modulated
functionv := e~“'u, which obeys the following modulated equation:

3/c?+2iv — Av+ f(v) = 0. (1.2)
Then we may think of the nonlinear Scldinger equation:

2i0 — Av+ f(v) =0 (1.3)
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as the singular limit as — oo of (1.2). The most important quantities of these
equations are the energy and the charge:

Exg () i= / ijc2 + [Vul® + Fu)ds,

Ens(u) :=/ |Vu|? + F(u)dx,
! (1.4)
Ox () :=/ ul? + i/,

Os(u) = / uPdx,

whereF (1) := 2A|u|??/(p + 2). Exyx andQx are conserved for any solution
u of (1.2), and so ar& s and Qs for (1.3).

So the most natural question about the nonrelativistic limit of (1.2) is whether
any solution with finite energy and charge converges to a solution of (1.3) in the
topology induced by those quantitied ¥). However, to the best of our knowl-
edge, there is no rigorous result on this problem in the literature. Indeed, there
are a few papers on some weaker results. In [L¥]convergence was proved
assumingH{? convergence of the initial data in the case where 2 andp < 2.

In [9,8], L4 convergence was shown for2 ¢ < 2n/(n — 2) assumingH*
boundedness ankf convergence of the initial data under the assumptien3
and some restrictive assumptions @n

Here we present an almost complete answer. Namely, we will pkbve
convergence assuming® convergence of the initail data, for amyand any
p < 4/(n — 2). Perhaps the upper boupd= 4/(n — 2) might be allowed, but
it would be a very delicate and difficult problem. Actually, we do not know even
the uniqueness of finite energy solutions for (1.3) wita- 4/(n — 2) in general
case (see [2] for the wellposedness in the radial case).

As we will show later, theH* convergence can be rather easily shown, at
least whenm. > 0, by a compactness argument. However, when we want to
investigate the nonrelativistic limit in more details, such an argument can yield
very little information. So we give another method of analizing the problem via
the Strichartz estimate applied to the associated integral equation.

Here the main idea is to adjust the space-time norms to the nonrelativistic
limit in order to get a uniform estimate. More precisely, we split the solution in
the Fourier space into the lower frequency part< ¢ and the higher frequency
part|é| > c¢. The lower part is shown to behave as a solution of the@thger,
and the higher part vanishes at the rate of a certain poweridien one might
be anxious about the compatibility of such a decomposition with the nonlinear-
ity, but it will be efficiently dealt with the nonlinear estimate in sum spaces of
Lebesgue-Besov type. At this step, we lose the information about the frequency
separation, but we can recover it by exploiting ¥h&:-derivative gain.
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By virtue of the analysis via the Strichartz estimate, we can show the con-
vergence also in the case where< 0, as long as the solution to (1.3) exists.
As another application, we will derive the optimal rate of the convergenté,in

thatis 1/.\/c.

Our main results are the following, which cover those in [11,9,8].

Theorem 1.1 Letn € Nand0 < p < 4/(n — 2) (if n > 3). Let (¢, ¥.) €
H'@® L? ¢ € HY, u. be the solution of1.2) with (1.(0), it:(0)) = (¢c, Ve,
andv be the solution of1.3)with v(0) = ¢. Denote byl* and7* the maximal
existence time af,. andv, respectively. Assume that

(@e, Ye/0) = (9,0) InH' @ L?, (1.5)
asc — oo. Then we have

liminf 7 > T, (1.6)

c—>0

andu,. converges ta in C([0, T*); HY) (locally uniform convergence in time).

Itis obvious that we have the same result for the negative time direction. The
local wellposedness is well-known for (1.2) and (1.3) under the above conditions
(see [4,3]). By a priori bounds from the conservation law, we easily observe the
following: If A > O, then we havd* = T* = oo. If p < 4/n, then we have
T* = oo andT = oo for sufficiently largec (depending on the size of the initial
energy and charge).

Theorem 1.2 Let p, ¢, Y., ¢, uc, v, T* and T* be as in the above theorem.
Instead of(1.5), assume thaty,, ¥./c) is bounded ind! @ L? andg, — ¢ in
L? asc — oo. Then, for anyI' < T* we have

ng?] lue(®) —v(®)llz2 < O(lge — ¢llL2) +q (o), 1.7)

whereq = 0(1/./c), or more preciselyl/cq(c)| 21~ < oo, where

lg(@) 2 ==Y sup [g(e)]. (1.8)

jeN 2 <c<2i+1

Moreover, for anyg(c) satisfying||/cqll,z.~ < oo, we can findp € H*
such that we have

lim fluc(t) = v(0)]12/q(c) = oo, (1.9

no matter how we choose> 0 close to 0 and a bounded sequerigg, v./c)
in H' @ L? satisfying|lg. — ¢|l.2 < q(c).
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The contents of this paper are as follows. In Sect. 2, we give a generalized
Strichartz estimates for (1.2). It can be seen as a full mixture of the well-known
Strichartz estimates for the Sdilinger, the wave and the Klein-Gordon equa-
tions, but it does not seem a trivial combination. In Sect. 3, we derive a nonlinear
estimate in sum spaces. In Sect. 4, we will derive a uniform boundedness of
Strichartz type norms (which themselves depend)oi Sect.5, we prove the
H? convergence. In Sect. 6, we prove the/t rate of L? convergence and its
optimality.

We abbreviate< C’to * <’, whereC is a positive constant dependent only
onn, p and any other fixed parameter (excepof course). For any Banach
spaceX consisting of space-time functions and any time intefvale denote

||M||X(1) = | xrullx, (1-10)

wherey,; denotes the characteristic function/ofFor any functiory, we denote

its Fourier transform by = F¢, and denote Fourier multipliers agV) :=
Flp(i&)F. We denotela), = +/|a|2 + b2, where we omith whenbh = 1.
DenoteD := (V),. B], andB" denote the inhomogeneous Besov space and
the homogeneous one respectlvely (see [F])denotes the function space of
sequences with the norifulles = 127/ a;|l¢a. [+, -]o @and (-, -)s, denote the

complex and the real interpolation functors. We denotelthaner product by
(-, -). For any spac&, we denote the dual space Ky. For any complex function
g, we denote by’'(z) its R-linearization at.

2. Uniform Strichartz estimates for nonrelativistic limit

In this section, we derive Strichartz-type estimates for the linear equation:
ii/c?+ 2in — Au = f, (2.1)

where function spaces depend©iout in those inequalities we can take positive
constants independent@fThose Strichartz estimates describe the transition of
the space-time norms of Strichartz type along the nonrelativistic limit, from the
Klein-Gordon to the Scludinger.

The following separation of frequency is essential to know that transition. Let
X andY be Banach spaces which consist of space-time functiong. ke (R")
satisfy y () = 1 for |&] < 1 andj (&) = Ofor |&] > 2. Letx°(&) := x(&/¢)
andy. := 1— x°. We introduce the Banach spaxg Y with norm defined as

lullxyy := IIx“ *ullx + llxe *ully, (2.2)

so that it measures the frequency lower than the speed of light by -herm
and the higher frequency by thenorm.
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Equation (2.1) can be rewritten in the following integral equation.

u = eic’ {COS(C(V)CI) i (VC>

Sin(c(V)Ct)} u(0)

c

1
c(V)

c

+ e sin(c (V) 1) )

f(s)ds.
(2.3)

1(0) +/ e CUSin(e (V) (t — 5))
0

c

So it suffices to investigate the operatdfgr) := e*<V)<’, Then we get the
following Strichartz-type estimates.

Lemma 2.1 For anyc > 0O, we have

1K (O)@llsol (wonko) S llell 2

H ! (2.4)
/ K@ —s)f(s)ds
0

SN lsy ok
Sol (WoNKo)

for any spaces;, W;, andK; of the forme™*L? (RR; Bg,z) satisfying the following
conditions. Leb := 1/p anda := 1/2—1/q. All the spaces;, W; and K; must
obey

-2b+na+o+u=0 0<2bh<1 0<2a<l1, (2.5)
and each space should satisfy
S;: u=0, 2b < na, (2.6)
W:: u=>o, 2b < (n —1a, (2.7)
K;: nu=@Q+2/n)b, 2b < na, (2.8)

respectively.
We will use the corresponding estimates fot solutions, which are imme-
diate from this lemma.

Proof. Denote the linear operators in (2.4) By andT 2, respectively. Then we
have the following scaling property:

Tro = THe(x/c))(c?t, cx), T2f = TELf(t/c?, x/)](cPt, ex)c 2. (2.9)

From this and (2.5), it is obvious that the estimate in general case follows from
that in the special case= 1. Then, the estimates | W and S| K reduce to
the estimate in [5, Lemma 2.1] by the well-known argument (see, e.g., [6,7]).
Thus we have only to derive the estimates fr&ito W and W' to K.

Below we will show the estimate frofy’ to K with the following exponents:

W: (b,a,0) =((n—1)8,28,—(n+ 1)B), (2.10)
K: (b,a,0)=my,2y,—(n+ 2)y), (2.11)
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where 0< 28 <1/2,28 <1/(n—1),2y <1l/nand 0< y < B. Thisis the
borderline case in (2.7) and (2.8) with a constraint 8. Nevertheless, we get
the estimate in the remaining cases from that in this special case, via Sobolev
embedding, interpolations with thie? estimate and the duality argument. We
denoteW’ =: L?°(By,) andK’ =: L%(Bj} ). Since we are now considering only
the frequencyé| > 1, we do not have to distinguish the homogenous Besov
spaces from their inhomogeneous counterparts.
By the duality argument, it suffices to estimate

[f,_, (K@ —s)f(s), g(t))dsdt. The double integration ifs < ¢} can be de-

composed as follows.

o g d a—r a+3r
// dsdtF (s, 1) :cf —”/ —“/ ds/ diF(s,1), (2.12)
s<t 0 rJr r Ja-zar a+r

whereC is a certain positive constant. Denote

a—r pa+3r
I = / / K (—s)f(s), K(—)g(t))dsdt. (2.13)
a=3r Ja

(
+r

If we apply the Schwarz inequality to theintegral and use the? estimate, then
we can not dominate the integral farbut we get only a bound of the integrand.
We will recover its integrability by the real interpolation for bilinear operators;
this idea was inspired by [7]. We denote

J = /a_r K@ —s)f(s)ds. (2.14)

—3r

Applying the decay estimate in [5, Lemma 2.1] directly, we obtain

—(2n-1
10 poov2e - Sr™ @ Y2 fll paasramrisy, - (2.15)
2/(1-4p).2

On the other hand, by th&? estimate we have

12 SN flwa-ar.a—r) (2.16)
Interpolating between (2.16) and (2.15) [by-1, /5, we obtain
18 S~ D71 f | Lot a—sra—r: By ) (2.17)
where ¥p, :=1— (n — 1)(8 — y). Then, by the ldlder inequality we get

|I| S r’ ||f||L1’(a—3r,a—r;B’ )||g||L‘1(a+r,a+3r;B’ )s (218)
w K
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forp>pi,g>1landv=2— (n—1)B —ny —1/p — 1/q. Using the Hblder
and the Minkowski inequalities, we obtain

da
f7|1| ST = a2l < P Ol
It —a =2l < r)gOll g9, 219

(By)
5”U||f||Lp(B’W)||g||Lq(B;<),
wherep < p',q < g’ and ¥p' + 1/¢' = 1, so that we need an additional

restriction ¥p + 1/q > 1. Denoting the left hand side iy, we discretize the
integral forr as

j+1

e (2.20)
r

e 2
|
0 d JeZL 2
and denote the summand B. We have obtained

1A o S v lgl Lacay)- (2.21)

whenp > p1,g >1and ¥p +1/q > 1.

Now, to get the desired estimate foif ll0, we use the following real interpo-
lation theorem for bilinear operators. This theorem is essentially due to O’Neil
[10] and formulated as below in [1, 3.13.5(b)].

Theorem 2.2 Let T be a bilinear operator(Xg, X1), (Yo, Y1), (Zo, Z1) be in-
terpolation couples of Banach spaces. Assume

ITCf Nz Sl llg (2.22)

forO <i,j,i+j < 1 Then, forany0 < 6,6, < landl < pg, p1 < 00
satisfyingdp + 61 < 1andl < p :=1/(1/po + 1/p1), Wwe have

1T (fs )l zo. z10ag 100 p S I X0, X1)00. o 118 1Yo, Y100y - (2.23)

Since the point1/p,1/q) = P := (1/po,1/qo) is included inside the
triangle Ao := A0, 1)(1/p1, D)(1/p1, 1 — 1/p1), we can find another triangle
A1 = A(by, do)(ba, d3) (b3, d>) which is contained inside o and surrounds.
Applying the above theorem to (2.21) 813 with appropriat®, ands,, we obtain

||H||,ch) 5 ||f||Lpo-2(B’W) ”g”L‘iO’Z(B;()’ (2-24)

where L?4 denotes the Lorentz space. Then, by the embeddiihg- L7?
(p < 2), we obtain the desired result. O
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3. Nonlinear estimate in sum spaces

In this section, we derive an estimate for power nonlinearities in sum spaces
of Lebesgue-Besov type. The argument is quite standard; its complexity comes
only from the summation of the spaces. We will derive the estimate in the ho-
mogeneous Besov spaces, which together with trivial estimates fraders
inequality gives the corresponding estimate in the inhomogeneous spaces. Now
we introduce the following notation to state and prove the estimate both simply
and systematically.

Definition 3.1 We define

={aL’(R; LY(R")) |« > 0,0 < 5,g < oo},

={aL*(R; £2(Z; LYR"))) |, 0 > 0,1 <s,g9,r < 00}, (3.1)

= {«L’(R; B ,(R") | @,0 > 0,1 <s,¢,r < 00}.
You can see that the set of spaeds for ¢ variable is pretty superfluous in the
following argument. It can be easily generalized to the set of order preserving
function spaces, but here we restrict it to the case that we need. With any
aLSB;’ € B, we associate,(B) := (loga, 1/s,1/q,1/r,0) ando(B) := 0.
Similarly, we definer,(X) for any X € £; and definery(X) forany X € Lo,
for which we regard agl/r, o) = 0. For anyX € £; andg > 0, we define
X =n" Y(Br;(X)). For anyX in Lo, anyY € Ly and anyB € B, we define
XY := ni_l(rro(X) + m1(Y)) andX B := m, Y(7mo(X) + m,(B)), and we denote
X =, ‘7 (X) andB := 7y ', (B).

We estimate the Besov norms via difference operators. We denotetthe

unit vector inR” by e,. For any function: we define

[ule,j = lu(x + 277 e + [u()| + lu(x — 277 ¢)],
S ju = u(x + 277 ep) —u(x)| + |u(x) —u(x — 277ep)|, (3.2)
8 ju = lu(x +27er) — 2u(x) + u(x — 277 ¢)|.

Itis well-known that the Besov norms can be represented by the differences.
Actually, we have the following retraction from, to B, which is obvious from
the usual proof of the equivalence of the norms (see, e.g., [1]).

Lemma 3.2 Define operators™ for m = 1, 2 by
" Pj =8, 1. (3.3)

Then,S™ is bounded fronB € B to (B)" if o(B) < m. Moreover, there exists
a sequencér;’} C S(R") satisfyingR;"; = 2" R}"(2/x) and the following
properties. Define operator®™ by

R" f ZR % fr (3.4)

Then we hav®®” S™ f = f andR™ is bounded fron{B)" to B.
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By this retraction, we have in particular the equivalence also for sum spaces
and interpolation spaces.
The following basic lemma is hecessary to consider estimates in sum spaces.

Lemma 3.3 LetN e NandB;,i =1,..., N, be acompatible tuple of Banach
function spaces. Suppose thatwe hiavigs, < ||v|| 5, for anyi, u andv satisfying
lu] < |v|. Assumeéu| < > . |v;|. Then we have

lulls, 5 Z vl 5, (3.5)

Proof. Defineu; as follows. If|v;(x)| > |v;j(x)| for any j < i and|v;(x)| >
[vj(x)| foranyj > i, then letu; (x) = u(x). Otherwise, let;; (x) = 0. Then, we
have

w(x) =Y ui(x), |ui()| S i), (3.6)

Thus we obtain|ully, 5, < >, luills, S >, lIvills;- O

We introduce the following assumption about the nonlinear fungiaith
a parametep > 0. A typical example ig (1) = |u|?u.
g:C—>C, gO=0
lg(a) — g®)| Sla —bl(lal + D)7,
la — bl(lal + 6P, (p > 1),
la — bl|?, (p =1,

(3.7)
1g'(@) — g'(B)| S

Now we can prove the desired nonlinear estimate.

Lemma 3.4 Let p > 0 and assumg3.7). LetX; € LoandZ; € Bfori =
0,...,3. Suppose that (Z;) < min(2, p + 1) and X/ Z; € B for anyi. Then
we have

I8y, xrz, S (llallxonx, + 1bllxanxs)” (Iallzonz, + 161 2102s) -
(3.8)
Proof. By elementary calculations, we have
162,80 S (1l 162 jul + [} 18 jul?, (3.9)

if p > 1. Substituting: = a + b, we obtain eight terms. We estimate only two
typical terms. We omit the subindices for a while. BplHér's inequality, we
have

11a1”18%b 1l xp 2, S Wal”lixp 16701z, S lallg, 16112, (3.10)
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and
-1 2 -1 2
10a1P 1852l x2 23, x5 251y, S Mal? ™ p-31118D1 xa20, X221,

(3.11)
Sllall,

HSbH [(X3Z)Y2,(X3Z23)Y21y/p°
where the last factor can be estimated as follows.

1861 1(xazp 2. (xaza 21y, S 1B ”[<stl>1/2,(X323)1/2]1/p
1/2 1/2
(X3Z1) (X3Z ) (312)

1-1/p 1/p
5 ”b”[X3 Z1]1/2 ||b”[Xs Z3]1/2

1/2 1/2—-1/(2p) 1/(2p)
SIBIYZNBIZ Y P b1 2

’

where, in the third inequality, we have used the embedding
LY(R") C BY (R") (3.13)

for X3. Thus we obtain a bound X} Z1, X§ Z3ly/, C X7 Z1 + X§Zs. The
remaining six terms are estimated in the same way.
If p <1, wehave

167 ;8 )| STulf ;187 jul + 18 jul”*™. (3.14)

Substitutingu = a + b, we have two new terms. We estimate bplt#Er's
inequality as
|8a||” T . (3.15)

p+l
dal™ Il xz X/ 21/

Zor\./l

By (3.13) and the complex interpolation we have

x5/ 2oY 0D 5 [ Xo, Zolypes (3.16)

and then the interpolation inequality gives the desired estimate. The other term
is estimated in the same way. O

4. Uniform boundedness of strichartz norms

In this section, we prove uniform boundedness of solutions for (1.2) in the
Strichatz type norms appearing in Sect.2. The procedure of our proof goes as
follows. We derive an iterative estimate for the associated integral equation (2.3)
with f = f(u). At first we have an estimate for the homogeneous term by the
resultin Sect. 2. Itis known that such a norm is finite for any soluijoof (1.2)

with finite energy and charge (see, e.g., [3]). So we can estimate the nonlinear
term f(u.) in sum spaces by the result in Sect. 3. Since we k#y€), in the
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inhomogeneous term, we can gain 1 derivative for the higher frequency part at
the cost ofc weight. For the lower frequency, we can gain as many derivatives
as we like, at the cost of the same powet ofhereby we can come back to the
frequency separated spaces, and then we get the desired closed estimate, where
the norms depend anbut the constants are independent of

The precise result is the following:

Lemma 4.1 Letn, pandi beasinTheorem 1.1. L&t K andW be asin Lemma
2.4. Then, there exist positive continuous functiBis and M (-) satisfying the
following. Letc > 1 andu be a solution of(1.2) with

lu (Ol 2 + 11 (0)/cll2 < E < o0. (4.1)
Thenu exists at least of0, T (E)] and we have
| Dullsiwnk .7y < M(E). (4.2)

Proof. First we prove the above lemma whern> 3. The other case is much
easier. We estimate the solutienn the following spaces:

Z = SlezﬂKl,

4.3
X = Sl| Wl, ( )

whereS,, W, andK are of the formc=*LY/*(R; BY, ,(R"), andS; andW; are
of the formc=#*LY?(R¥*"), with the exponents, o, . listed in Table 1.

Table 1.Exponents forn > 3 (p* = 4/(n — 2))

u 1/2—b o n fiu) b—1/2 o %

S1 2/(n+2) 0 0 s7 8o 1/(n+2) 1 0

S Ym+2 1 0 | SUKi Ym+2 12 12
Wi 15/m+1) 0 =b|W'Wa Yw+Dd 12  =b
Wo  Yn+D 12 =b| WS, - 1 2+
Ki 1/m+2 12 172

V) fw  b-1/2 o0 o1 1
R1 T/ +2) 1 32 ~12
Ry 1/n+1) 1+1/(n+1) 3/2 1241+ 1)
2 1 2 3 1 1 2 1
R3 Wl T a2 1+ 5 Statr T3t avl T ner

By the Strichartz estimate (Lemma 2.4), we have

iz inzax S 1@l s + 14(0) /¢l 2, (4.4)
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wherev solves the free equation ((1.2) with= 0) with the same initial data as
u. For anye > 0, there exist&, > 0 depending only orf ande such that we
can decompose the nonlinearity A8:) = fo(u) + f1(u) where

| fo)] < Celul, [fo) < Ce, (4.5)

andg = fi/e satisfies (3.7) witp = p* := 4/(n—2). By the nonlinear estimate
(Lemma 3.4), we have

p*
where the exponents of the spaces on the left hand side are given in Table 1, and
Il fo@) Nl 10,7 11y SCeT|u lL=,7; 1), 4.7)
foranyT < T*. By the regularization effect av).~*, we have
(Ve AN Rt oy S UA N g, 61 et w2 5 (4.8)
where the spaceR; are of the form
LY’ By, 1LY BT}, , (4.9)

with the exponentsb, og, o1, ) given in Table 1. Combining these estimates
with the Strichartz estimate, we finally obtain

C
(Ve

fu(s))ds

/ ¢TSI (V) (t — 5))
0

L®HNZNX(0,T)
§8||M||§(0,T)||M||Z(O,T) + C.Tllullp~@.7:11)- (4.10)
Denotes? := L*(H') N Z N X. The above estimate implies

* 41
lulleor) < lvlleo.r + CellullGor + CTCellulle.r), (4.11)

as long as: exists untilz = T. If we takee sufficiently small, which depends
only on E, and takeT (E) sufficiently small, then we obtain from (4.11),

lulleo,r) < 2lvileomn (4.12)

for T < T(E), which also implies that: can be extended until = T(E).
Repeating the estimate (4.11) with the left hand side replaced with any space
allowed by the Strichartz estimate, we obtain the desired result.

If n < 2, then we defing2 := L*H'N LYL>, whereq > max(p, 2). By
the Strichartz estimate we haje|; < E, and

1- +1
lu —vlieo.n SIFWImern ST ulbior. (4.13)

from which the desired result follows. O
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5. H' convergence

Lemma 4.1 means in particular that there exists s@me 0 independent of

¢ such that(u,, it./c) is uniformly bounded inH* @ L? on the time interval

t € [0, T]. So, in order to prove th&/! convergence (Theorem 1.1), it suffices

to derive theH* convergence of0, 7] under the additional assumption of the

boundedness i#/* & c¢L?. Using this repeatedly on consecutive intervals, we

obtain Theorem 1.1. In particular, if > 0, we can prove the theorem directly

without the estimate in the previous sections, since we have a uniform global a

priori bound for theH* @ ¢L? norm by the energy and charge conservation.
Hence we suppose, in addition to the assumptions of Theorem 1.1, that

luc(Ollgr + llic(®)/clirz < M (5.1)

ont € [0, T]forsomeM < ooindependent af andt, and prove the convergence
(u, ii./c) — (v,0)in C([0, T]; H' @ L?) via a compactness argument.

Let A C C(R") be an enumerable set which is denseiint. Then, for
anyp € A, {{p, u.(t))}~1is abounded set i@ ([0, T']). The equicontinuity (for
¢ — o0) can be seen as follows: From the equation, we have

1

(0. t1e(t0) — ue(12)) = (p, / iedt)

fo

= (p’i/liic/cz_Auc+f(uc)dt>/2

n

(i) — (1)) /P + i f Au+ fu)dt) /2
i (5.2)

so that we can estimate

(o, ucto) — uct)) S Hipllz + o — talllpll o (5.3)

Now the Ascoli-Arzed theorem implies that if we extract an appropriate sub-
sequence, thetp, u.(¢)) converges inC ([0, T]) for anyp € A, and sou.(t)
convergesirC ([0, T]; w-H?'), wherew-H! denotes the weakly topologizétf.
Then it is easy to see that the limit functiog,(r) satisfies (1.3) and the initial
conditionu ., (0) = ¢. But the unigueness of such solutions is well-known (see
[4]), so that we have,, = v. Itis indeed not an easy task to get the uniqueness
only from the finiteness aff %, but in our case, we have the uniform boundedness
of the space-time norms from Lemma 4.1:

IDucllsywnko,ry < N. (5.4)
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for some finiteN. Since the higher frequency vanishesSiiR*") asc — oo,
we obtain by the weak convergence,

IDusllso,ry < N, (5.5)

for any S satisfying the conditions in Lemma 2.4 (may depend of§). Then it
is quite easy to show,, = v.
By the conservation of charge and boundedness ofwe have

05(v) = lim Qi (u) = lim QOg(uc; 1), (5.6)

uniformly on[0, T']. Thus we obtaim,. — v in C([0, T]; L?). By the interpola-
tion, we also have the convergenceifi2. Then, we have

/|Vv(t)|2dx = IerOIO/|L't/c(t)|2+|VuL.(t)|2dx, (5.7)

uniformly on[0, T']. On the other hand, the uniform weak convergence implies
that, for anys > 0, there existgg such that

/|Vv(t)|2dx < inf /|Vuc(t)|2dx+8 (5.8)
c>co

for anyr € [0, T']. These two facts make us conclude that
liwc()/cllgz = O, [[Vuc@llgz = Vo) .2 (5.9)

in C([0, T]), which in turn enhance the weak convergence into the desired strong
one;u, — vin C([0, T]; HY).

Since the limit is unique, we do not need to extract any subsequence. Thus
we obtain the desired convergence result. O

Interpolating the convergence in the energy space and the uniform bounded-
ness in Lemma 4.1, we obtain also the convergence in the space-time norms.

Corollary 5.1 Under the same assumptions as in Theorem 1.1, we have
I D(ue —v)lswnko.1) = 0, (5.10)
foranyT < T* and anyS, W and K satisfying the conditions in Lemma 2.4.

Remark 5.2.If p > 1, then we can prove the convergence also by such direct
estimates as in the previous section. Byt ik 1, then we can not avoid some
compactness argument more or less, because of the singularjty)oét the
origin.
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6. L? convergence rate

In this section, we prove the optimal rate of convergencg?ifTheorem 1.2).

The dominant term is the free part, and in order to prove the optimality, we
employ an idea from the scattering theory to dominate the strongest term among
the nonlinear ones. Denofe]. := ({(a), + ¢)/2 and

KE(@t) 1= emieEMor, (6.1)

wherec(c — (§),) = c|§?/[§]. — |£[°/2 andc(c + (§),) — oo asc — oo.
Below we will often omit the subscript

First we show the upper boundl/./c). We estimate the convergence in
Y := QNDS,, whereQ := L*®L?andS,is as given in Sect. 4. Definec (0, 1)
by p = ap* forn > 3, wherep* = 4/(n — 2), anda := min(p, 1)/3forn < 2.
We define an auxiliary spadé:= [Q, DS2], D T . Hereafter, every norm far
is taken on the intervaD, T'), which we will not write explicitly.

Let r(c) = Y% with ¢ > 0 sufficiently small. By the boundedness in
L*®H'N S, | K1, we have

X % (e, Vlr = OL/r) + O(er)™Y?) = O (7). (6.2)

Since 1- ¢/ (&), = |£12/(2(¢) [£].), we have for any Besov or Lebesgue space
B,

@ = c/ (V)X ] gy STP/? = O(H). (6.3)

From these estimates, we obtain

u(t) —v(t) = XF*R(I)¢+%X’*/O R(t—5) f(v(s) — K" (t —5) f (u(s))ds

+ %X’ */O K=(t — ){f (u(s)) — fw(s))}ds
+ 07 + 0(lpe — ¢ll2), (6.4)

in T, whereR.(t) :== K_ (t) — e~*4!/2, Differentiating byc, we get

Y
Rc(t)(p——l/; WKV (t)tgﬂd)/ (65)

Lety; := x2"" — x? for j € Nandg, := x'. By the Strichartz estimate, we
obtain

lg: % R.(Dpllr < min(L, f 29y 3 dy)lg v ell:  (6.6)

c
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Taking the square summation fpiand using the Minkowski inequality, we get
1" * Regllr S(T) [Min(L, 2Y¢2)lg; @l 12,2 - (6.7)

Denote the right hand side y(c). Then we have

IVeplZym STV Y min@2, 2736720227 g, 5 0|17, S(T) 2|13
k’j
(6.8)

Applying the Strichartz and the nonlinear estimatesfto) as in Sect.4, we
obtain in a similar way,

< 00. (6.9)

L212°(T)

“x/E/ X" % Re(t —5) f(v(s))ds
0

Integrating by parts, we get

— o1 /0 K+t —s) fu()ds = x" * [[VI7EKT (0 — ) f u(s)/c]y

— X" % / [VIZEK T (t — 5) f/(u(s))ii(s)/cds. (6.10)
0
Then the first term can be estimated as
lx" % [VIZEKF (=) fu(s))/clla S e 2rt " Y2YD) £ u(s)) | -1, (6.11)

from which we obtain a bound @f(c=1t%) in T". For the second term, we first
consider the case whetie< 3. We have

ueLPLY® 4 c7Yropopmn = g, (6.12)

wherepo := max@3, p), 1/p1 :=1/2— (14 1/po)/n forn = 3andp; = oo
forn < 2. Since| f/(u)| <1+ |u|P°, we have

X" s fr@yi/cllpae S @i/ellpapeyetrie ST+ lullP)li/cllo,
(6.13)

where ¥ p, := 1/2+ po/p1 < 1/2+ 1/n. So the second term on the right hand
side of (6.10) is bounded b@ (1/¢) in . If n > 4, we have

If i/l propm < Tl/”"llulliooLG/(nfa li/cllierz, (6.14)
where ¥ po:=1—«a/2and ¥Yp; :=1/2 + 2a/n. So we have
X" * VIS f @i fellropy , = O (W24, (6.15)

Then, the Strichartz estimate yields the same order for (6.1D) in
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Thus we have obtained
u(t) —v(r) = %/0 x x K™t —s){f(u(s)) — f(v(s))}ds +o, (6.16)

in Y, whereo = g(c) + O(|l¢. — ¢ll2) and/cq(c) € £2L>®.
The remaining nonlinear term is estimated bgl#€ir's inequality and the
Strichartz estimate as

lu —vllr ST %" * (f @) — FO)10.DR11w+10.DRs), + ©

Y (6.17)
ST, v) 1§ lle = vly + o,
if n > 3. SinceY C Y and||(u, v)| x is bounded, we obtain
lu —vlr So, (6.18)

if we takeT sufficiently small. Repeating this argument, we can extend this result
foranyT < T*.
If n < 2, then by Hlder’s inequality and the Strichartz estimate we have

lu —vlly SUF@ — FO)llz +0 ST u, v) 17y llu — vy + o,
(6.19)

whereg := (n+2)p/a > 2(n+2)/n. Since||(u, v)| rs¢ IS bounded, we obtain
the desired upper bound as in the case 3.

Next we prove the optimality. Lef; := Sups; _._2j+1 g (c). Since 2q; € €2,
we can find;’ satisfying Z'q; e ¢2andlim;_, » q;/q; = oo. The above argument
implies that it suffices to choogesuch that

1

Uu—v= 5/0 x"* K~ (@t —){fu@s)) — fw(s)}ds + R, (6.20)

with | Ry Sg(c) and infej _._o2j+1 |R(#)]l 2 Zq]f. Now we have only to get
the same order for the free pdst:= R(¢)¢ and to dominate the nonlinear term
I .= fé R(t — s) f(v(s))ds in T, for the above arguments show that the other
terms decay faster.

First we findg satisfying

inf_ Illo()ll2 = q- (6.21)

22) <c<22j+1
Definep € H' by ¢(¢) = ¢j for 2/ < [§| < 2/*.Then we have
el ar S 1127 ¢}ll¢2, and (6.21) follows from
| Flol = '€/ 4810 — 11 16(6)] 2 181%/1€115(6)] (6.22)
for |£1%/[£]? < 1.
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Next we reduce the space-time normsaind f (v) by the following lemma.
Lemma6.1 LetS = L4(By,) satisfyg < oo and the conditions in Lemma 2.4.
Then, for anyy € L?, anys > 0, anyT < oo and anye, we can findy e L?
satisfying

ID*U @)Y s,y + SUpllD* xe * K (DY llso.r) <&, (6.23)

c>1

whereU (t) := e~'41/2, and

MGIEZGE (6.24)
Proof. DenoteU..(t) := x. * K (t). First we show that for any € L? we have
supl|lU.()U ()¢llso.r) = O, (6.25)

c>1

ast — oo. Since the above supremum is bounded by, 2, it suffices to show
this convergence whep € C5°. Then, by the stationary phase method, we have

U@ U0l pr, ST, (6.26)
so that we obtain (6.25).
Now defineg; € L?by ¢ = Y,_o¢;, suppp; C {2/ < |§| < 2/*1} and
supppo C {I§] < 1}. Lety; := U(Tj)g; andyy = } . ,Y;, whereT; > O
should be chosen sufficiently large. Then (6.24) is obvious. Moreover, we have

DU ()i lsor) S 2V NUT)HU)9; || s0.79 (6.27)

which tends to 0 ag; — oo, uniformly forc > 1. For example, we can choose
T; so large that (6.27) is smaller than®2/¢. Hence we obtain the desired result
by the triangle inequality. O

We choose € (0, 1) satisfyings < p.Ifn > 3,thenlefr; := (D~*~1Y)NSs.
By the above lemma, for any > 0, we can replace € H! without violating
(6.21) such that we have

U @®elly, <e. (6.28)
Then the nonlinear and the Strichartz estimates yield
lolly, Se + T ollf ™ (6.29)

Sincep > 0, if we choose sufficiently small depending ofi andp, the above
inequality implies a boundk ¢ for the left hand side. Then, from (6.5) and the
Strichartz estimate, we obtain

r < p3=s,.27l-a .
||X * Il”T ~ r Cc T ”f(v)”[l‘ooHlJrs’D—sS:{’ S$olo (630)
S r37SC72T170£”U||[;:F1 — O(C*2+(37S)(l/2+8)) — 0(C71/278)‘

Thus we have obtained the desired optimality.
If n < 2, we putY; := (D~*71Y) N LY4(R¥™"), wheregq is the same as in
(6.19). Then, by the same argument, we obtain the desired optimality. O
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