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1. Introduction

We consider the nonlinear Klein—Gordon equation in space-time R"™!

2o, R mc?
(11) ——chzu —%Au'f-T

where 1 <n <3, 1> 0, % is the Planck constant, m is the mass of particle, ¢ is
the speed of light, and u” is the second time derivative. When n =3 and y = 3,
the equation (1.1) was introduced by Schiff [10] as the equation of classical
neutral scalar mesons.

Substituting

u—l—/ﬂu[y*lu:O, xeR",teR,

— o (imctt)/h
u = pe (e 0/h,

we obtain from (1.1) the following nonlinear Klein—-Gordon equation for u:

h2
o" — i’ — — Ao+ A" v = 0.
2m

2mc?
We now consider the nonlinear Schrédinger equation

2

—ilv' — %Av + A" v =0.

Comparing the last two equations, we find that the nonlinear Klein—Gordon
equation turns into the nonlinear Schrodinger equation if the first term of the
nonlinear Klein—Gordon equation vanishes. So we expect that solutions of the
nonlinear Klein—Gordon equation converge as ¢ — oo toward the corresponding
solutions of the nonlinear Schrédinger equation. We regard the procedure
¢ — oo as “nonrelativistic limit.”

We may think of the Klein—Gordon equation as a relativistic generalization
for the Schrédinger equation. From this relation, we have a particular interest
in the convergence of solutions of two equations. In this paper we study this
problem in detail. Without loss of generality, we may set A=1, m=1/2,
e=1/c* and f(v) = Ajo]" 'o.

With given initial data, we rewrite the equations in question as
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(1.2) ev" —iv' — dv+ f(v) =0, v(0) = vgg, v'(0) = vy,

(1.3) —iv' — Av+ f(v) =0, v(0) = vgo.
We denote by v, and vy solutions of (1.2) and (1.3), respectively.

The purpose of this paper is to study how v, converges to vy as ¢ — 0.
There are a few results on the problem. In [11], Tsutsumi proved the con-
vergence in L*(0,T;L?) for n=2 and 2 <y <3. In [8], Najman prove the
convergence in L*(0,7;L?) with 2 <g<2n/(n—2) forn<3 and 2 <y <3.
As regards the initial data, Tsutsumi required that wy,, vgo € H?, v1, € H!, and
that v, converges to vgy in H?, while Najman required that v, v € H',
v1e € L%, and that vg, converges to vy in L?>. But Najman’s result does not
cover Tsutsumi’s one, since the mode of convergence of solutions is different.
In respect to methods of proof, Tsutsumi used the conservation of energy and
the Brezis—Gallouet inequality (see [1]). Najman’s proof is based on the
representation of the solution of the second order (in time) equation which was
used by Fattorini [2] in treating the linear nonrelativistic limit, and on the L?—
L7 estimates for the Klein—-Gordon equation (see [7]).

In this paper, we would improve Najman’s results. Under the same
assumptions on the data as Najman’s, we give that the solutions converge in
L*(0,T;L?). From energy estimate and the Sobolev embedding theorem, we
have convergence in L*(0,T;L?) for any ¢ with 2 < ¢ < 2n/(n—2) at once.
Here we emphasize that the case ¢ = 2 has been open and that L? convergence
is of both mathematical and physical importance. We give an extension of
admissible values of y as well. We would follow almost the same line as in
Najman’s proof. We adopt Strichartz’s type uniform estimate under procedure
of nonrelativistic limit.

This paper is constructed as follows. In section 2, we state the main
theorem. In section 3, we give Strichartz’s estimate for the Klein—Gordon
equation. Using this, we prove the main theorem in section 4.

We close this section by giving several notation. We abbreviate LY(R") to
L% and L"(I; L4(R")) to L]L4, where [ is a time interval. We denote by H*4
the usual Sobolev space of order s. We abbreviate H%? to H*. For any p
with 1 < p < o0, p’ stands for its Holder conjugate, ie. p’' = p/(p—1).

2. Main theorem
We state our main theorem.
Theorem 1. We assume that
(2.1) voe € H', vip € L2,

(2.2) voo € H',
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(23) sup(Jlvoell i + &'/ *|orell2) < o0,
>0
(2.4) lim [0, — tooll > = 0.

Then for every T > 0, we have

(25) 111% llvs — UO“LW(O, 7,02y = 0,
here

(2.6) 1<y£1—57 for n =3,
(2.7 l<y<ow for n=1,2.

Remark 1. From this Theorem, we can obtain that the solutions
converge in also L*(0,T; L9) for 2 < g < 2n/(n —2). We have it by Sobolev’s
embedding theorem and interpolation theory with the fact that the solutions of
NLKG are bounded in L®(0,T; H') uniformly with & which will appear in
section 4.

3. Strichartz’s type estimate for the Klein—Gordon equation

In this section we study the space-time integrability properties of solutions
of the free Klein—-Gordon equation. In order to use in proof of Theorem 1, we
construct the estimate including the parameter ¢ for equation (1.2). From the
Duhamel principle, the solution v, of (1.2) satisfies the integral equation,

1 t
(3.1) 0,(1) = I,(t)v0s + Jo(1)01, — EL Jo(t = 5 (va(s))ds,

where
L(t) = e/ <cos t4, — ~21—8A;1 sin tAg),

Jo(t) = e"* 41 sin 4.,

1 12
A, =— (1 —ded .
7 ¢ e)

We investigate the operator J(¢).

Proposition 2. For any interval I ¢ R with O e I, ue Co(I x R") and pair
(qi,ri), i=1,2, such that

IA
Ml =

o]
\S]
S
N =
=
+
[\
S |-
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the following estimate holds:

(3.3) <l

Jtng(t — s)u(s)ds

0¢

q
LN (I;L) L2(L%)
where c¢ is independent of u, I, and e.

Proof of Proposition 2.
We introduce the results on decay of solution of Klein—Gordon equation.
(see [9]) For any 1< ¢’ <2< g < oo, the following inequality holds:

34) NI =7 sin((T = "0l Loy < et VYD ull -z ey
We define
3,(1) = (o — A) 7 sin t(ad — 4)V2.
We consider the mapping property of J.(r) on the basis of the identity
To(t) = 22 ().

For >0, we define (Usf)(x) =f(Bx) and we use the facts that Uﬂ = Uy,
that 8P Uy is an isometry on L? and that

3,0 = o 2U T (@ P UL,
Therefore we have

1 . t
(3:5) RO 26" Uy jyy 23y (2 )U(1/4e>‘/2

From this identity and (3.4), we obtain,

1 ~ (LY 71

(36) “EW)“ o e[ Va1 (5) Uity

. /2

=< q”‘”( >U<1/4s)”2“ ‘Lq
P\ n(l/2-1/g)
< e () 1T bgtllan-v
—n(l/Z—l/q)H( — 4 A)I/Z (n/2—(n+2)/q) u”

Thus

Jtle(t — s)u(s)ds

0¢

L4

< cJt = s POV (1 — o) 202052 0y
0
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The Hardy-Littlewood-Sobolev inequality in time implies

t
1 n/2—(n
(3.8) JOEJa(t — s)u(s)ds . < c||(1 — ded) /202~ +2)/q)“”L;"L,3/’
with
2_n_n
r 2 g

There exists ¢ >0 which is independent of & such that, for any 6 >0,
1 <p<oo,

(3.9) 11 — 4ed)~%ull, < cllul] -

So we have

t
1
(3.10) J Lig—sued| < clul,,.
0¢ LL c
if
§~n+2 <o.
2 g

Then we obtain desired estimate from duality argument and interpolation with
the energy estimate.

4. Proof of the main theorem

At first, the assumptions (2.1), (2.2) ensure that there exists a unique
solution v, of (1.2) such that v, e L*(0,T; H'), vl e L*(0, T;L?) (see, e.g. [6]),
and the equation (1.3) has a unique solution vy € L*(0,T; H') (see, e.g. [5]).

From the energy conservation for (1.2) and the assumption (2.3), we obtain

(4.1) sup Hvell;w(o,r;m) < 0.

From the conservation laws of energy and charge for (1.3), we obtain
(4.2) ool oo, 711y < 00

The Sobolev embedding theorem allows us that

(4.3) SUp |[vel Lo 0, 7, 1) < 0
e=0
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for any s such that
2<s<6 forn:>3,
2<s< @ for n=2,
2<s< for n=1.

The solution vy of (1.3) satisfies

(4.4) vo(t) = I()(Z)li()() — ijtlo(l —5) f(vo(s))ds

0

with

Proof of Theorem 1.
To study v:(f) —vo(t), we divide it into 5 parts:

5

(4.5) ve(t) —vo(2) = > 11(2)
i=1
with
(4.6) 1D(8) = (L(¢) — (1)) voo,
(4.7) 12(1) = L(t)(vo: — voo),
(4.8) 13(8) = J,(t)v1e,
(4.9) 19(r) = L: (i]o(t —5) — %Jg(t - s)> £ (vo(s))ds,
(4.10) 1P(1) = %L Jo(t = 5)(f (vo(s)) — [ (ve(s)))ds.

This is the same decomposition as in Najman’s paper [8].

results have been shown in it.

(4.11) m |7 g =0, i=1,23,

where

2<g<6, n=23,
(4.12)
q=2, n=1,2.

The following
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With respect to 18(4), we use the property of the solutions of the nonlinear
Schrodinger equation in order to extend admissible range of nonlinear power 7.
In the case of n =3, we have for any 1 <y <5, see [5]

. 3
UOGLtWXI’q, “:z
The embedding theorem implies

1
L'L? ——oK <L
I R
From the condition 1 < 4/(y — 1), we obtain
||Vf(”0)“L,1L§ = ||Vf(UO)||L;t/(y—1)L§

From |Vf(vo)| < c|vo]’~'|Vwo| and the Hélder inequality, we have

IV (wolll psro-02 < C||UO||L711L§1 Vool 22,
with
1 »—1 1 y—1 y—-1 1
2 )2 Q@ 4 2] ry

For each 1 <y <5, we set 1/p1 =1/12, 1/g2 =1/2— (y — 1)/12, 1/r; = 1/8,
1/r, = (y—1)/8, and we have

Vf(vo) e LIL2.
In the case of n=1,2, it is obvious that
f(v)eLlL2, 1 <y<oo.

Then we can apply the Theorem 1 (b) in [8], we have for g satisfying (4.12),
(4.13) 11_{% ||le(4)“L,°°L;§ =0.
So we have to estimate only 1,9(5). For simplicity we denote
(4.14) F(s) = f(vo(s)) =1 (va(s))-

For the case of n = 3, we define the new norm with 0 <6 <2/5 0<t<T
(4.15) Mo = 11 Nlzwgo, 22y + 11 - oo, i L2v-y-
Since 2 < 2/(1 —6) < 6, we have from (4.11) and (4.13)

(4.16) lim "), =0, i=1,2,3,4
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From Proposition 2, we have
(5)
2z mo,t = C”F“LZZ’LZZ,-

Considering (3.2) we choose ¢j =2/(1+4), r} = 4/(4 —36). The Holder in-
equality implies

HF”L,“/M’M)L)%/(HB) < CMIUB - UO||L;V3‘5L,\2./(H5) (”Ug”le(y—l)/(Zf}r;)Liy-—l)/ﬁ
+ llvo ||Lf<y“)/(2*3")L§V*”/")y—l .
We take 6 such that 2 < (y—1)/0 <6 for each 1 <y <17/5, and then

||U£|| 2-1)/(2-39) y p-1)/5 + ||Uol| 2y-1)/(2-38) ; (=1)/8
L L] L; LY

)“UOHL;CLW—I)/&

X

< 1(2_35)/20’_1)||Us|]L§nL<v—1>/6 + £(2-39)/2(y-1
< Cf2-39)/2(-1)
Therefore we obtain
(4.17) 1 llo, < C2 302y, — UO||L;1/3JL§/<1—6>
< C202 v, — wolly, -
From this and (4.16), we have
lloe = vollo,, < € + Cr2 o, — woly
where
l% c. = 0.
This implies that for sufficiently small T
tim l2, — vollo 7, = 0.
Previous estimate can be repeated on the time interval [Tj,27;]. So we have
y_{% llos — DO”'TO,ZTO =0.
Repeating this procedure, we obtain eventually
(4.18) lim [jo; — vollo, 7 = 0.
Thus we have with 1 <y <17/5
(4.19) }:1_1}3 [[v: = voll L= o, .12 = 0.

This completes the proof for the case n = 3.
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We consider the case n = 1,2. We utilize Proposition 2 again to obtain

11 o1z < CIF

L;/Lg/.
The Holder inequality with
1 1 y—1
4. — ==
(4.20) 7 2—1— P
implies
-1 -1
1 0,522 < Cll el "™ 02 = ool w0l Lo, £

1
< Cllve ~ voll oo, 1, 22) N0ell Lo 0,114y + ”UOHL(v—Ur/(o,t;Ls))y

< € [0, = w0l o o ey
The argument from (4.17) to (4.18) gives
(421) lim “Ug — UO“LOO(O T;L?) =0.
e—0 Y

Considering (4.3) and (4.20), we are allowed

1 <y<oo.
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