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In this paper we give a mathematical proof that the Klein-Gordon and Dirac 
equations of relativistic quantum mechanics have the correct nonrelativistic 
limits. Our proof applies to the physically important case of an external electro- 
magnetic field, albeit with some restrictions on the size of the field (in a previous 
paper [7] only the free-field case was treated). After applying transformations 
to facilitate study of the nonrelativistic limiting behavior, both equations can 
be represented in operator form as & - ihtt + SW = 0, where S is a self- 
adjoint operator on an appropriate Hilbert space and E is a small constant. The 
correct nonrelativistic equations are formally obtained by setting E = 0. On 
physical grounds it is argued that z& cannot be appreciable, and thus cz& can 
be neglected. Since this is a singular perturbation problem, it has been established 
only comparatively recently (Zlamal [9], Smoller [8], Friedman [l]; an excellent 
survey is given in O’Malley [4]) that solutions of the above operator equation 
converge as E + 0 to solutions of -&u, + Su = 0. 

Our results go further by estimating the difference between solutions of the 
relativistic and nonrelativistic equations in terms of the parameter E, but are 
restricted to operators S which are time-independent, continuous, and “not too 
large.” In particular, electostatic potentials with Coulomb type (1 /r) singularities 
are formally excluded. However, by definition of the nonrelativistic limit all 
other energies in the system must be small compared to the rest energy mc?. 

Physically this means that the nonrelativistic limit cannot be employed in a 
region of space where the electostatic potential is very large, for example, in the 
neighborhood of the nucleus. 

The proof is an extension of the methods employed in [7], which treated the 
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case of a positive semi-definite operator S, i.e., no external field. A somewhat 
involved perturbation argument is used here to reduce the lower semi-bounded 
case to the positive one. Conditions on the electromagnetic potential sufficient 
to insure that the Hamilotnian (S) is lower semi-bounded are carefully analyzed. 
The treatment of the nonrelativistic limit of the Dirac equation by semi-group 
methods is also believed to be new. 

Our results are based on the following theorem which will be proved in 
Section 2. Theorem 2 of Section 2 gives operator-theoretic conditions under 
which the lower order perturbations due to the electrostatic potential can be 
neglected. 

THEOREM 1. Let wf and w satisfy, respectively, 

twit - 2aiw,’ + SW’ = 0, WC(O) = g E D(S2), 

wtw =g,EW) 
(1) 

-2aiw, + SW = 0, w(o) = g (2) 

where S (the Hamiltonian) is a self-adjoint and lower semi-bounded operator with 
lower bound -d on a Hilbert space H, D denotes domain, and E, a, d are positive. 
Then 

II w’(t) - w(t)lI d at + 1) (& II sleg II + to II Ski!1 II) 
for a constant C. 

1. THE KLEIN-GORDON EQUATION 

In what follows A = (a, , a2 , a3) denotes the magnetic vector potential, 4 the 
electrostatic potential, and x = (X 1 , x2 , x3). Following Schiff [6, p. 4691 we 
make the substitution uE(x, t) = u(x, t) exp(imc2t/fi) in the Klein-Gordon 
equation for a particle of charge e and mass m: 

fi2u,, + 2ie+u, - e2+2u + t(ifiV + (e/c)A)“u + m2c4u = 0 

to factor out the relativistic rest energy mc2. There results 

(ti2/2mc2) z& - ifi(1 - e+/mc”) ut’ 

+ [e+(l - e$/2mc2) + (1/2m) (ihV + (e/c) A)2] uE = 0. 

The Schrodinger equation 

-ihut + [(1/2m)(ifiV + (e/c)A)2 + e$]u = 0 

(3) 

(4) 

(5) 
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can now be obtained from (4) by dropping the first term and the two terms in 
e#/mc2, arguing that in the nonrelativistic limit (all other energies in the system 
are small compared with mc2) (@/2mc2) ’ utt is small compared to ihutf and e+/mc2 
is small compared to 1. It is not difficult to justify neglecting the latter two terms 
if their smallness is made precise. This is done in Theorem 2 of the Appendix. 
More challenging is the first term because it represents a singular perturbation 
(its neglect reduces the order of the equation). Consequently, we shall con- 
centrate on the effects of this term and drop the other two, obtaining 

cwft - ihwtf A- [( lj2m) (itiV + (e/c) A)2 + e$] w’ = 0. (6) 

In order to utilize the results of operator theory we must choose an appropriate 
function space for the solutions of the Klein-Gordon equation. Our interest 
in the nonrelativistic limit dictates the choice wE(x, t) EL*(R~) x C?[O, T] for 
some large time T. That is, we assume that each solution of the modified Klein- 
Gordon (6) has a finite L2 norm at each point in time. This is reasonable because 
the corresponding solution of the Schrodinger equation (5) belongs to L2(R3) x 

Cl[O, T], and allows us to estimate the divergence of the corresponding solutions 
over time. To make the transition to the Hilbert spaceL2(R3) we let the operator 
in brackets in (6) operate on functions in C,a(R3). It has been shown by Kato 
(see [2] for an excellent survey article) that the symmetric operator so defined 
has a unique self-adjoint extension on L2(R3) which is lower semi-bounded 
provided: (i) A(x) is continuously differentiable (it may behave arbitrarily as 
1 x 1 + cc), (ii) + can be written as the sum of a function in L2 and a bounded 
function. It is worth noting that (i) allows a uniform magnetic field (the Zeeman 
effect) and (ii), electrostatic potentials of Coulomb type. However, we cannot 
justify the discarding of the e?b2/2mc2 term from (4) to obtain (6) for such 
potentials. 

We are now in a position to apply Theorem I. Inspection of its proof shows 
that the leading term in the estimate is actually ~/a = 2fi/(mc2), and the complete 
estimate has the form 

+ t d&l I/ Sg 11 + &V2 I/ S2g 11 + terms involving g,]. (7) 

Here C is a dimensionless constant. Each of the terms in brackets can be related 
to the energy of the system. Since the transformation u --f UE is equivalent to 
subtracting out the rest energy, the remaining energies and hence the terms in 
brackets are small compared to mc2 in the nonrelativistic limit. In fact if 4 = 0 
(no external field), then S is nonnegative and we may take d = 0 [7]. 

The Dirac Equation. We let a = (01~ , a2 , 01~) and /3 denote the four 4 x 4 
Dirac matrices. If F and G are two vector operators, then the operator F * G 
is defined by (F . G)f = (F,G, + FzGz + F3G3)f, and the superscript r 
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applied to a row vector will denote the corresponding column vector. With 
this notation we may write the Dirac equation as 

[ifi a/at - e+ + (z&V + eA) . a - mc2/3]u = 0 (1) 

where u = (ui , u2 , uj , UJ is the 4-component wave function. For the non- 
relativistic reduction it is more convenient to rewrite (1) as a coupled system 
of two equations 

(ih a/at - e$)u, + (iticV + eA) . au0 - m&r, = 0 (2) 

(ifi a/at - e$)ub + (&V + eA) * au, + m&q, = 0 (3) 

where o = (ui , u2 , us) are the 2 x 2 Pauli spin matrices, and u, = (ui , u2)r, 
ub = (us, u4)* are the “large” and “small” components, respectively, of u. 
Our aim is to show that in the nonrelativistic limit u, satisfies the Pauli equation 

ihw, = (1/2m)(&V + (e/c)A)2 + e$ - (&/2mc)H * o]w (4) 

and ub is negligible. 
In order to uncouple (2) and (3) we define new functions w, and w- by 

W f = tl, + ub , w- = u, - ub , where the addition is componentwise. Let L 
denote (i&V + eA) . o. By first adding and then subtracting (2) and (3) we 
obtain 

(iti a/at - e$)w+ - Lw, - mck = 0 (5) 

(ih a/at - e$)w- + Lw- - mcew+ = 0. (6) 

Solving (5) for w- and substituting into (6) yields 

(Q2 + LQ - QL - L2 - m2c4)w+ = 0 (7) 

where Q denotes %a/& - e$. It can be shown [6, p. 4781 that LQ - QL 
reduces to -i&cE * cr and L2 reduces to (z&V + eA)2 - ehcH * Q where 
E = -~~aA/at - V$ = -04 (since A is assumed time-independent) and 
H = V x A are the electric and magnetic field strengths, respectively. Hence 
(7) becomes, again setting E = A2/2mc2, and w;(x, t) = w+(x, t) exp(im&/fi), 

l wttt - ifi(1 - e$/mc”) w:~ + e4( 1 - ey5/2mc”) w,’ + [(1/2m) (itiV + e/cA)2 

- (eA/2mc) H * o + (i&/2mc) E * o] w+’ = 0. (8) 

Following a similar procedure we obtain the same equation for weE except that 
+(ieh/2mc)E . CJ is replaced by -(i&/2mc)E . o. 

In situations of physical interest the E term in (8) is of order (v/c)” times the 
e# term, according to Schiff [6, p. 4791, w h ere er is the velocity of the particle 
described by u. Thus, in the nonrelativistic limit (w Q c) the E term in (8) 
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and in the similar equation for w-’ may be dropped as a small perturbation of a 
lower order term. This done we have, to order (‘u/c)~, w.+.~ = weF or uge = 0 
and u,” satisfying (8) without the E term. In the nonrelativistic limit we are also 
justified in dropping the two e$/mc” terms in (8), following the argument of 
Section 1. We thus obtain the two-component Pauli equation for u, , namely, 

l a2u,/at2 - i&au,/& + [(1/2m)(zZV + (e/c)A)2 + e+ - (efi/2mc)H . u]u, = 0. 

(9) 

It is not necessary to impose growth conditions on A directly since it is part of a 
positive operator. However, the H term is not negligible and so we must assume, 
e.g., that H as well as $ can be written as the sum of a square integrable function 
and a bounded function. Since H = V x A, this is a requirement on the growth 
of the first order derivatives of A. From such assumptions it follows from the 
result quoted in Section 1 that the operator in brackets in (9) is self-adjoint 
and lower semi-bounded on L,(Rs) x L2(R3). We can now apply Theorem 1 
to deduce that the solutions of (9) and (4) differ by an estimate of the form (7) 
of Section 1. 

Strictly speaking we have shown that the transformed (4 -+ @ exp(&/e)) 
Klein-Gordon and Dirac (the two “large” components) wave functions are 
closely approximated by the Schrodinger and Pauli wave functions, respectively. 
However, the time factor exp(&t/e) represents a very high frequency oscillation 
which is not physically observable. From a physical standpoint, therefore, it is 
sufficient to obtain the nonrelativistic reduction for the transformed wave func- 
tions. 

2 

THEOREM 1. Let wE and u satisfy, respectively, 

•W;~ - 2aiw; + SW’ = 0, w’(0) = g E D(S2), %w =glE w9 (1) 

-2aiu, + Su = 0, u(O) = g (2) 

where S is a self-adjoint and lower semibounded operator on a Hilbert space H, D 
denotes domain, and F, a are positive. Then 

jj w’(t) - u(t)11 < eC(t + 1) 

for a constant C. 

Proof. We first note that the “energy” estimates developed in the proof of 
Theorem 2 below can be used to show the solutions of (1) and (2) are unique, 
but we omit the verification. By hypothesis, there is a constant d > 0 such that 
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S + 2ad is positive, i.e., ((S + 2ad)f,f) > ~(f,f) for all fe D(S). Hence, 
S + 2ad has a unique positive (self-adjoint) square root, which we shall denote 
by T [3, p. 281-j. W e consider the first-order system 

$(;:)=i(&[,’ -;]+$[-:: -Z]+[“, ;])(::)-qj (3) 
with ~~(0) = u,(O) = g E D(P). If we multiply the second of these two equa- 
tions by i(d - U/C) and the first by a/at + (i/#)T - iale, and then substitute 
for ua in the first equation we find that zli satisfies the equation 

cz& - 2&v, + (S + cd2) v’ = 0, 

@) = g, v;(O) = i/e112Tg + idg. 
(4) 

A similar procedure shows that u2 also satisfies this equation (with different 
initial conditions). The proof is now accomplished in two main stages. We 
first compare the solutions of (2) and (3) by taking Laplace transforms and 
working backwards by use of the identity (6). Then the difference between (1) 
and (4) is estimated by “energy” methods. 

The operator LE of (3) is evidently self-adjoint on H x H, and, consequently, 
i0 generates a group of unitary operators on H x H which we denote by 
exp(il’t). From the theory of semi-groups we know that for g E D(T), the 
unique solution of (3) is given by 

(z:) = exp(iL9) (i) . (5) 

Now the Laplace transform of a semi-group is also the resolvent of its infinitesi- 
mal generator, here (hT - iLE)-l, where I denotes the identity operator on H x H. 
Taking determinants we iind 

where D = (ch2 - 2aiA + cd2 - S)-l. Because S is self-adjoint, D is every- 
where defined and bounded for X > 0. Evidently 

lib& - iL+l = -i [z t] (-2aih - S)-l = R. 

We would like that R be the resolvent of iL = (1/2ai)[i ‘& a two-dimensional 
representation of (2). It may be verified by multiplication that h - iL and R are 
inverse to each other, provided both are restricted to operate on elements of the 
form (3. To get from the convergence of the Laplace transforms (resolvents) 
back to convergence of the solutions we need the following identity [7, p. 2551, 
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valid for any two semi-groups exp(Srt) and exp(Sst) on a Banach space B and 
any complex h for which (h - S&l and (h - S,)-1 exist: 

[exp(S2t) - exSW1 ~4 
= [(A - S,)-l - (A - S&l] exp(S,t) (h - S,) w 

- exp(S,t) [(X - S,)-l - (h - S,)-l] (X - S,) w 

+ jot exp(S,(t - s)) [(X - S&l - (A - S,))l] exp(S,s) (X - S,)2 w ds 

03) 

where w E 0(&a). To apply this we take S, = iLc, S, = iL, h > 0, and w _- (“,) 
for g E D(sP). By the unitary property 11 exp(il’t)]] = // exp(iLt)j/ = 1. Hence, to 
bound the right-hand-side of (6) in terms of /I(h - iL)g 1) and 11(X - iL)3g jj we 
only need an estimate for /I(h - iL)-l - (A - ifi)-l /I. Now 

(A - iL)-l - (A - iLB)-l 

z --I I 1 f z ((-2aih - ~)-l - D) - c [i it] D - i&2 [oT ,$ D 

r;: R, $ Rz + R, . (7) 

Each of these terms can be estimated using the functional calculus for self- 
adjoint operators [5, Chap. IX]. We have 

11 D - (-2aih - s-l Ii2 K s I 1 1 = ’ d I/ E, II2 -g. <X2 - 2aiA + cd2 - 2ad + x2 - -2aiA - 2ad + .v2 

where {L&3 is the spectral resolution of T. Here we have used the fact that 
S = T2 - 2ad. A calculation shows that the integrand is bounded by 
[<(X2 + dz)/(4a2h2)]2; consequently, an upper bound for R, is E(P + d2)/2aA2. 
Similarly, 

lIDI < max 
E-m,%) 

1/((x2 - 2ad + &I2 + cd2)2 + 4a2h2)1/2 < 1/2aX, 

= (A2 + d2)1/2, and // R, /( < ,(A2 + d2)1/2/2aX. 

R, may also be estimated using the functional calculus, and we would find 
I/ R, (1 < C&2. Combining these 3 estimates yields I/ exp(iLt) - exp(iLV)ll = 
O(E~/~). This estimate on the difference of the semi-groups can be carried over 
immediately to the difference of the solutions of (2) and (4) and this would 
conclude the first stage. 
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However, a closer analysis shows that the estimate on the difference of the 
solutions can be improved to O(e). This has already been done for the case 
d = 0 in [7] and will only be outlined here. First we rewrite (7) as 

[exp(iLt) - exp(ilV)] w 

= R3 exp(ilt) (A - iL) w - exp(il’t) R&l - iL) w 
(7’) 

+ it exp(ilE(t - s)) R, exp(ils) (A - zX)~ w ds + O(E) 

where O(E) denotes all the terms involving RI and R, , and w = (g, g)r. Since 
(ul + ~a)/2 also satisfies (4), together with the initial conditions e(O) = g, 
~~~(0) = idg, we add the two equations represented by (7’). Denoting the 
elements of exp(iPt) by SJt), 1 6 i, j < 2, we find 

u1 + us - 2u = f [S&(t) - l&(t)] g = 0 + i(c1’2) (Sz, - Sfl) TDT,g 
i.j=l 

- i(P2) 1” (S& - A’&) (t - s) TDT12exp(St/2ai)g ds + O(E) 
0 

(8) 

where Tl zz h - 5’/2ai. The above utilizes the fact that S;, = S& and 
exp(St/2ai) commutes with Tl a. The first part of the proof could be quickly 
concluded if it were known that 11 Si, - S& 11 = 0(8/a). This is stated in 
Lemma 1 below. Using the estimate from Lemma 1 and /I exp(St/2ai)ll = 1 in 
(8) yields, for a > cd, 

II u, + ~2 - 2~ II ==c (~/(a - =9) II FD II (II T,g II + t II T12g II> + OkI. (9) 

The functional calculus shows that II T2D II < (d2 + A2)1/2/A provided ,(A2 + d2) 
< 4ad. Since A > 0 is arbitrary, we set h = d for convenience and assume that 
cd < a/2. The above inequality is thus satisfied, and </(a - cd) < 26/a. With 
this and the O(E) terms we find from (9) 

II u&) + u2W - 2Wll G @M(ll T,g II + t II C2g II>. (10) 

Let (v, , u2)r = exp(il’t)(h, h)r. Then E~~~(u, - a,)/2 satisfies (4) with the 
initial data u’(O) = 0, o{(O) = iTh. Further, II zr, - v2 11 = li[S,, - S,,]h II < 
(&“/(a - ad)) II Th )I by Lemma 1. By linearityy = (z+ + u,)/2 + l ‘(wI - e1,)/2 
has the initial data y(O) = g, r,(O) = i(dg + Th), and combining the last 
estimate with (10) we obtain 

II rP> - WI Q (4+)(ll T,g II + t II T12g II) + (+I II Th II. (11) 

We have now estimated the difference between the solutions of (2) and (4). 
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Next comes a comparison of the solutions of (1) and (4) (for the same initial 
data). We shall generalize (4) somewhat and prove 

THEOREM 2. Let w andy satisfy, respectiveb, (1) and <ytt - 241 - Q) yt + 

(S - V)y = 0, with the same initial data. Let z = w - y. Then 11 z jl = O(E). 
Here we assume that Q and V are self-adjoint and either Ia and II or Ib and II 
holds: 

(Ial> (QJf> G 0 and 

(14 II Qfll d rl llfll + r2 II Wll, .f~ W), and rly r2 < c. 
(Ib) Q is bounded with /I Q 11 < E. 

(II) II Vfll d s1 llfll + s2 II WI, .f~ W), and sl , s2 < E. 

Proof. x satisfies 

cztt - 2ai(l - Q) Z$ + (S - V) z = 2aiQw, - VW = cf (t), 

z(0) = q(O) = 0. 
(12) 

Taking the innerproduct of (12) with xt first on the right and then on the left 
and adding the resulting two equations yields 

4d/dWt , zt) + (W)((S - V)z, 4 = 2~ Re(f, 4, 

or 

E II zt il2 + ((S - V) z, 4 = 2~ Re L* (f (4 4s)) 4 (13) 

where we have used the self-adjointness of Q and S - V. If we do the same 
with Z, only this time subtract, we find 

c[(ztt , z) - (z, ztt)] - 2ai(d/dt)((l - Q)z, Z) = 2k Im(f, z). (14) 

Now (ztt > 4 = (VW, , z> - (zt ,4, (z, ztt) = (W)(z, .4 - (zt ,4, and 
substituting this into (14) and integrating we obtain 

E Im(.a, , .a) - a((1 - Q) Z, x) = E Im lt (f(s), z(s)) ds. (15) 

For simplicity, we choose hypothesis Ia and obtain from (15), after discarding 
the term in Q, 

0, II x II2 G c II *t II‘34 II z IIM + dn II 2 IIM . (16) 

where II - IL = ~~~~~~~~ II * /I and K denotes an upper bound for Ilf(s)llM to be 
estimated. It follows from the assumption on V that ((S - V)z, z) 3 -dl(.z, z) 
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for a constant dr > 0 satisfying dr < 2ad + E max((1 - E)-l, 1 + 2ad). 
Inserting this in (13), 

and completing the square, 

E /I zt ljM < (edI Ij z 11% + c2K2t2)“’ + EKE 

< (cdl)1’2 Ij x jlM + 2cKt. 

Substituting this into (16) yields finally 

/I z lIM < 3~Kt/(a - (edl)l/z). (17) 

With hypothesis Ib and II we find that (16) and thus (17) hold with a replaced 
by a - e. 

It remains to bound ef(s) = 2aiQzu, - Veo. Choosing (La) and (II), it will be 
sufficient to bound w, SW, wt , and SW, . Applying the same procedure used to 
derive (13) and (15) to (l), we obtain the following two equations: 

E II “t II2 + (SW, w) = c, = E II g1 II2 + (Sg, g) 
l ~~(~~,~)--ll~/12=~2~~~~(g~,g)+Ilgl/2. 

As in the first part of the proof, these two equations imply 

/I w/l < I?;‘~ + (4,)““/(a - (Edl)1’2). 

Now SW also satisfies (1) because of the assumptions g E D(P), g, E D(S), so 
that the above estimate for w implies 

11 SW Ij < (C;)“” + (&;)““/(u - (cd#“), 

where Cl , Ci are C, , C, with g, g, replaced by Sg, Sg, respectively. 
To bound wt we multiply (1) on the right and left by wtt and subtract the 

resulting equations, obtaining 

a II wt II2 - Im(Sw, wt) = C, = a II gl II2 + Im(Sg, gd, 
a II Wt II2 d c3 + II SW II II wt II* 

Since SW is bounded, it follows that wt is bounded. Again applying S to (l), we 
have immediately that SW, is bounded. Inserting these four bounds into (Ia) 
and (II) establishes that 2aiQwt - VW = O(E), which completes the proof of 
Theorem 2. 

Remark. The hypotheses of Theorem 2 are slightly restrictive for the 
application to relativistic quantum mechanics. In particular, the B in the bounds 
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can be replaced by Cc, e.g., rr , rs < Cc in (IaJ where C < l/e; this only 
inserts another multiplicative constant into the bound for jl z I). Also, the 
requirement that the perturbation Q (due to the electrostatic potential) be 
negative is not essential, although it simplifies the proof. In fact it follows from 
the relative boundedness assumptions (Isa) and (II) that I(Qz, z)l < 
Ce[i((S - V)z, z)l + (a, z)], [3, p. 343, prob. 3.141, where C Q l/c. Now 
\((S - V)z, z)l can be bounded satisfactorily from (13), which permits the 
term a(Qz, z) to be retained in (15) and estimated without substantial change 
to (16). Thus the remainder of the proof goes through as before. 

For completeness we sketch the proof (based on Kato [3, V, Sect. 51) that 
perturbations due to Coulomb type potentials satisfy (Ias). First let S be the 
self-adjoint extension of the Laplace operator V2 and let u E D(S). Then 

It is a standard result from Fourier analysis that a function whose Fourier 
transform is integrable is bounded and continuous, with 

Now if q is a multiplication operator which can be expressed as q = q. + q1 
where q. eLm(R3), q1 ED, then qu ELK* with 

II P I12 < II 40 I/m II u II2 + II 41 II2 II 24 IL G w 5% II + II u II)* (18) 

Finally, if S’ is a more general Hamiltonian of the form S + q’, where q’ satisfies 
the same hypothes as q, then if follows readily from (18) that 

II qu I12 < C,(ll S’u II + II ZJ II). (19) 

For Coulomb type potentials the perturbation Q has the form const. (h/mc2)/y, 

and since l/r has a decomposition as q. + q1 , it follows from (19) that (Ia,) holds 
for an E the order of h/mc2. The perturbation I’ was introduced to cover the 
e?+2/2mc2 term in (4), Section 1 and the rd2 term in (4), Appendix. However, 
as discussed in the Introduction, ea+2/2mc2 cannot be shown to satisfy the 
hypothesis on I’ if $ is a Coulomb type potential. 

To tie up loose ends we remove the restriction on the initial data for y(t) in 
(11). Recall that we have constructed a y(t) solving (4) with data y(0) = g, 
y,(O) = i(dg + Th), where T = (S + 2ad)l/a. The construction of the square 
root [3, p, 2811 shows that T-l = (S + 2ad)-i12 is a bounded linear operator 
(defined on all of H), so that the equation i(dg + Th) = g, is solved for arbitrary 
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gl by h = F(g, - idg), and I/ Th /I < l/g, /I + dllg 11. Recalling that TI G 
d - S/2ai, we see that (11) coupled with Theorem 2 yields an estimate of the 
form required in the statement of Theorem 1. 

LEMMA 1. LA 

and denote the elements of the semi-group exp(iL?) by S;,(t), i, j = 1, 2. Then for 

f  ED(S) 

IlLUt) - %(t>lf II < cl”/(a - 4 II Tf II . 

This is proved in [7, p. 2611 for the case d = 0. No essential modifications of the 
proof are required for d > 0. 
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