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We consider a discrete-time orthogonal spline collocation scheme for solving Schrodinger equation with
wave operator. The scheme is proposed recently by Wang et al. (J Comput Appl Math 235 (2011), 1993—
2005) and is showed to have high-order convergence rate when a parameter 6 in the scheme is not less
than %. In this article, we show that the result can be extended to include 6 € (0, 41) under an assumption.
Numerical example is given to justify the theoretical result. © 2012 Wiley Periodicals, Inc. Numer Methods
Partial Differential Eq 29: 693-705, 2013
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. INTRODUCTION

The nonlinear Schrodinger equation with wave operator is introduced in Ref. [1]. In this article,
we consider the corresponding initial boundary value problem:

Uy — Uy +iau, + B)q(PDu =0, —x; <x <xg, 0<t=<T,
u(x,0) = up(x), u;(x,0) =u(x), xp <x < xp,

ule ZulxR=O7 0<tr=T, (D

where u(x, t) is an unknown complex function, i> = —1 and « is a real constant. In this article,
we assume that (x) > 0 and g (x) is a real function such that Q(s) = f(f q(n)dn is non-negative
for s € [0, 00).

Finding approximate solutions of (I) has attracted quite a lot of attentions in recent years
[2-7]. In Ref. [2], a nonconservative finite difference scheme is proposed to solve the problem.
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The accuracy is further improved by considering conservative schemes [5—7]. Very recently, the
discrete-time orthogonal spline collocation (OSC) method is proposed to solve the problem [4].
This article is closely related to the result in Ref. [4].

In the implementation of the OSC method, the solution is approximated by piecewise polyno-
mials. The coefficients of the polynomial are determined by requiring that the equation holds at
Gauss points that are the nodes of the Gauss-Legendre quadrature. Interested reader may refer
to Ref. [8] for more details on the OSC method. The OSC method has been shown to be an effi-
cient method for solving ordinary differential equations [9], linear hyperbolic problems [10], and
nonlinear parabolic problems [11]. Recently, the method has been applied to Schrodinger-type
equations [12-14].

As mentioned above, Wang et al. [4] has used the OSC method to study (I). They prove that
when the parameter 6 in the proposed scheme (see Section III) is not less than i the approximate
solution tends to the exact solution with fast rate. The main contribution of this article is to show
that, by considering the inverse estimate (Lemma 4) and some delicate analysis, this restriction
on 6 can be relaxed.

This article is organized as follows. In Section II, the method is reviewed and some lemmas are
introduced. The main result is presented in Section III. In the last section, the theoretical analysis
is justified by numerical experiment.

Il. PRELIMINARIES

We first give a review of some notations for the collocation method. One may refer to Refs.
[8, 10-12] for more details. Given a partition

Aixp=X0<X] <+ <Xy_1 <XNy=XpR

of I = [xz,xz], let hj=x;—xj_1,j=12,...,N and h = max; h;. In this article, we assume
that the partition is quasiuniform, which means that

for some positive constant p.
Let {t,l},{:o be a partition of [0, T], where ¢, = nt and T = T/J. In the remaining of this
article, we use C to denote a generic positive constant, which may be different from line to line.
In this article, we consider an integer » > 3 and denote M°(A) the space of piecewise Hermite
on [ defined by

MP(A) = {v € C' (D) : vl o1 € P} N {o(xs) = vixg) =0},

where P, denotes the set of all polynomials of degree at most r. We use R(M°(A)) to denotes
the set of all real-valued functions in M°(A).
To apply the collocation method, we introduce the Gauss points G = {5_/,k}j¥ ,fz_ll taken as

B h ,
ik = 5(%‘-1 +x;) + Efk, 2
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DISCRETE-TIME OSC METHOD 695

where {{};;11 denote the nodes for the (r — 1) Gaussian quadrature rule on the interval [—1, 1]
with the corresponding weights {wk}z;}, wy > 0. For two functions p, v defined on G, let (i, v)g
and ||u||g be given by

N r—1
() =Dy Y we(ub) (&),

j=1 k=1

and

1/2
lllg = (i) g .

We use WII, (I) to denote the general Sobolev space. For p = 2, we denote Wé(l ) = H'(I), in
this case, we have

) 1/2

L2<1)) -

We state some lemmas that are needed in the analysis of this article:

d’ n

dx’

ey = (Z

0=j=l

Lemma 1. ([4,12]) For n € R(MP(A)), there exist positive constants o, and o, such that
arllullg = llpll2gy < eallullg.
Lemma 2. ([12]) For u,v € R(M°(A)), we have

(Mxx; V)g = (M’ Uxx)gv

XR N
_(H’”" U)g = / Mxvxd-x + nr Z M_(jr)v.;r)h?il,

XL j=1

where /JL;”, v;r) are the constant values of the rth derivative of u, v on I; = [x;,x;_ ] and n, is a

positive constant depending on r only.

Lemma 3. ([12]) Let u € R(M°(A)) such thatu € H'(1;) for j = 1,..., N, and suppose
that V € R(M°(A)) satisfies

(uxx - Vxx)(é]',k) - (l/t - V)('g;:.qu) = 0’ k = 1’ EEET S L.
Then,
lu = Vilzoay < CH M ullgrergy.

Here, we remark that Lemma 3 still holds foru € M°(A) by considering the real and imaginary
part of u correspondingly.

The following inverse estimate plays an important role in our study. A special case has been
used in Ref. [12]. We present the general case here.

Lemma 4. ([15,16]) Let I; = [x;_1,x;], ph < x; —x;_y < h and P be a finite dimensional
subspace of WIIJ(I )n W;‘(I i), where O < m < l. Then, there exists a constant C such that for
allv € P, we have

—I+1/p—1
”U”Wé(lj) =< ch"” +/p /q”v”W,’;’(Ij)'
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lll. MAIN RESULT

In this article, we consider the approximate solution uj, € MPO(A) of (I) given by the discrete-time
OSC scheme, which is introduced in Ref. [4]:

1
{fz(uZ“ 2wy +ui) = (1 =20)(3) = 6[("),, + (7)., ]

2
vt ey o QU ) = (') ! + !
2T (l’th Mh ) +ﬁ | h+|| Z,]|2 2

} &) =0, (3)

where u), is prescribed by approximating uo(x). For u}, under the assumption that the solution
of (I) is sufficiently smooth, Taylor’s theorem gives u(x, ) = z(x) + O(t?), where

82
Ix 2

2(x) = uo(x) + tuy (x) + = ( — oy — ,3(](|M0|2)M0) (x).

Consequently, we can prescribe u) by approximating z(x) with Hermite piecewise interpolations
[4]. In this article, we assume that the partitions in the x and ¢ directions satisfy the relation
7 = yh'*? where § > 0, which can be arbitrarily small and y is positive.

We remark that in our scheme, the ¢ derivatives are approximated by finite differences. How-
ever, when considering the approximate solution u}, the notation (u}), will be used throughout

n+l_
the article to denote X - “ when there is no confusion from the context.
The following property for the approximate solution is obtained in Ref. [4].

Lemma S.  Consider the solution uj, of (3). For n < J — 1, one has the discrete conservation
law:

E" =[(uy), | = = 20)[((3) o) g + ((551) o) 6]

= L) i) g + ((h21) o i2) g + ((50) oo i) g + ((52) 0 52) 6]

1 N
320 Y w00 o) + (@ l)]

=E" ' =... = E° = const, 4

n+1 n+1 n+1

where u, ", w5 denote the real and imaginary part of u,,™", respectively.

To estimate the error between the exact solution and the approximate one, we need to have an
uniform bound for the approximate solution. This is given in the following lemma.

Lemma 6.  Suppose that 6 € (0,1), T = yh'*®, and u}} € M°(A) is the solution of (3). There
exists a constant C such that |uj| < C for all h and n, provided that the initial condition admit a
solution u(x,t) € C** N L2(H™).

Proof. Notice that, all the terms of E” in (4) are non-negative except the terms

—(=20) (), ) and = (1= 20)((]Y), o) o
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DISCRETE-TIME OSC METHOD 697

As they can be treated similarly, we first estimate — (1 —26) ((u”+l )xx» Uy, 1) g, Which can be written
as

5 L) i) g + ((460) o i) g ]

1 - 20 z . n+1 o n+1
=77 Zhj wk((uh,l ) Uy (Sjk) Z j wk uhl “Up, )(éj,k)

j=1 k=1 j=1 k=1
1—26 t . Wi n+l n n+1 n+1 n n+l n
= — ) Zh] 7[(1/[;” +Mh1) (uhl +uhl) (uh] _Mh’|) (“hl _Mh’l)](éj,k)
j=1 k=1
1-26 1-26
=TT (( RS ”2,1) Uy tu, l)g + 4 ((“ﬁl - “21) ”ZJTI ”Z,l)g &)

By Lemma 2, the first term in the last equality is positive and we need to estimate the second
term.
As we assume that h; > ph, applying Lemma 4 with p = 00, ¢ = 2, and m = 0 gives

dl(“'hHl] “21) — 1 dl(’/‘z,l),

-1
= TH (uZl)t” Wéo(lj) = Crhjl ’ “ (uZl)t” Lz(lj)'

dx! dx!
L®(1}) L®(15)
(6)
By (6), Lemma 1, Lemma 2 and the fact that Z, - ||L2(I ) = | - ||?, one then has
(it —uhi),, ﬁ?—u%k
n+l 2
- ) KA
zZ - ” (“lhﬂgl MZI —Cn, Zf2h o IH ”L2(1 ) / -
N r—1 5
> - Z h; Z wi (' — 1) &a) = Cn, 7 (om) 72 (i), |
j=1 k=1
N r—1 )
=~ Y Yy wi((h),) G — € (), I @
j=1 k=1

We first assume that r is odd. Notice that ¢, = —¢,_;. For k < =1, by taking

Biw=hj, = h;lGl,

and noticing (2), the Taylor expansion of (uj ), at §;; with step size ﬁ,-,k then gives (note that
d"(u},,):/dx" is a constant on [}):

) L dt (), E -
hj ((Mh 1) ) Gjx) = ((”Z,l)t(gj,r—k) — (Mz,l),(fj,k)) — Z F% h g
=2
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which, by Cauchy’s inequality, yields

1 r 1 dl n ; _ 2
((.4), ) E1u) = ( (1), Err) = (1), E10)) — —Mh‘1>

hj ~l o dxt o
n \2 n \? r dé n 2
o [ W) G | () G0 ( 1 d (), 50 ﬁ“>
= ~ = ——h; .
h%, 3, = \¢! dxt /
Similarly, by considering the Taylor expansion of (uj ;) at &;,_, with step size —ﬁ_,-,,_k = —l;_,«,k,

we get

1 LD (), G
((MZ,I),)j(Ej,r—k) = (fz_( — (up ), E0) + (), Ejrmi)) + Z (=D d" (uyy), & )
=2

ik 2! dxt
W E) (W) E) 1A, G -\
< (r+ 1) h,1 ,i J» + h,l~1‘ J + o h,1 ;K J hf_kl ]
hik h?,k = A dx ’

By (6) and (7), noticing that w, = w,_; , if we take ¢ = min; {;, we have

(" = uin) o i = wi)g

N %
= Ch7 | (uh, Z ((h),)2 Era) + ((1h),) Er0)]
2 o Z k 2 2
>—Crt*h? || (”Z,l)t || —2(r + Dajt? Zh,— Z ET((MZI)[ (&) + (MZ,I)[ (‘i:j,rfk))
j=1 k=1 ""j.k

2
—2(r + Dt Zh ZwkZ(—rh 2|| uhl)t||L2(1j)il§J(l>

20r+1
= con (), |- 2 S S )6
j=1 k=1

r—1
N 2 r 1
=20+ Degt* Y h; Z wy Z e 2h | (u5), 172,
j=1 k=1 =2 :

2

; ®)

= - o) I - e ), I - e )

where, in the last line, we have used the fact Z/ - ”L2(1 | = =%
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For r being even, we can consider ((u} ))x()1)s---» () ))xEji—22)s (W) )0)x
Ejra2/2)s - -+ (1)) (8j--1) as in (8). For the term ((u}, 1)) (§;,/2), notice that

1
((51),), &) = —( — (up,), G0 + (u5),Eir)

J)1

r _1 e _ 1 dl n i "
DI 2)ev (uh,cni);l(g,, 2 (hji/2)".
=2 ’

With a slight modification of the above argument, by taking the generic constant larger, we can
get the same bound as in (8).
Putting the estimate (8) back to (5), we have

2
—=20) (1), 5,)g 2 ~CTR (i), [ = €z ), - o 2—||( DI

Similarly, we can show that

2
= 20)((5), 1)y = € ), [ — ) I - €0 ),

By the assumption on u, one can get that E° is uniformly bounded. Note that T = yh!*®
implies 72h~2 can be arbitrarily small as & tends to zero. Therefore, the discrete conservation law
(4) and these estimates (note that 8(x) > 0) imply that, for & sufficiently small,

2

>

0[2
B = 5 = ), 5~ 0= 20[((5), o)y + (53,00 h0),) 2 ),

which gives an uniform bound for || (u}),||.
On the other hand,

n+1 n+1\2 n—1 n—1\2 n+l n+1)2 n+1 n—1\2 n+1 n—1\2 n—1 n—1\2
(”h U, )g (”h U, )g ("‘h U, )g (”h U, )g+(uh U, )g_(”h U, )g'
By the elementary inequality

2, 1o,
ab < ea —i—4—b, fore > 0,
€

we have

N r—
1 1\2 1 71 1 1 —1
(™ uyt )g — (' up™") Zh] wie (™ (it =l +ul — 7)) E )
1

~
Il

j=

C
Crllup |5 + ||u"+‘ —uz||2g+;||uh—uh e
= Cr((lupt'|; + @ g + 1), 1)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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and similarly,

(i )g = (i) g < Co(ag g+ 1), g+ 1), 15

Thus,

it g = g < ol G + D 15) + o (1 6ah), I + NGi="), 15)-
Discrete Gronwall’s inequality [17] then gives

J-1

max [ < (uuzu; voe S (), + | <uz‘>t||;>) exp(CCJ = 1)),

I<n<J-1
n=1

The uniform bound of || (u},), || now yields an uniform bound of ||u}, ||zg.
By Lemma 2 and the discrete conservation law (4) again, we have

E'=E"2 %fn AN R ([CAN R (CAN REXI(I AR N IR ICHN b

As 6 > 0, one can thus get that ||(u}), || is also bounded uniformly. Sobolev’s theorem can then

be applied to give an uniform bound for |u}]. ]

Remark 1.  In Ref. [4], the fact that u} is uniform bounded is stated, without proof, as a con-
sequence of continuity. We give a proof here not only for the completeness of our presentation
but also for the sake that the technique in this proof constitute the main ingredient for the proof
of our main result.

To estimate the error between the exact solution and the approximate one, we introduce the
following function for comparison. For the solution u of (I), we define W" € R(M°(A)) to
satisfy

(W, = W) (E ) — @' = WD(ED =0, j=12.. N, k=12..,r—1, (9

X

where u" = u(x,nt).
We have the following main result of this article.

Theorem 1.  Suppose that 6 € (0,3), B(x) > 0, g(s) € C', Q(x) > 0, u(x,1) € C**nN
L*(H"*3) is the solution of (I), and 5, % € L*(H™3), while u} € M°(A) (n =0,1,...,J)
is the solution of (3) with t = yh'*. If W" € M°(A) is defined by (9), and ||(u2 — WO),||iZ(1),

flul) — Wo”iﬂ(l)’ and ||luj, — W'! ”21(1) are bounded by Ch* 2, then for h sufficiently small, we

have

max [u" — uZ”Loo < C(r+hth.

1<n<J

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Proof. Lete" = u" — W", ¢" = u} — W". With the uniform bound of |u}|, following the
proof of [4], one can get that

IE)llg — 11" Dellg + lle" g — lle" g
== 20[() el ()0 8)g = (). )g = ().t )]
=0l et g + (7)o s g + (7)o el g + (7)) 0 )g]
<Ct(le" g + "N + llef 11 + lle) "' 1Ig) + Cr(z® + h)2.
We thus get that
" — 0" < Cr(@" + ")+ Cr(r* + T,

where

" =[l(e")llg + lle" Mg + lle"lIG — (A =20)[((ei™), . el) g + (7). ¢5) ]

—0[((e™) el + (7)) g + (&) el g + (), €2)g ]
As in Ref. [4], we can now apply the discrete Gronwall inequality to get that

max " < C(z? 4+ h 2 (10)

l<n<J-1

As mentioned in Remark 1, the main point in this proof is that, using the arguments similar to
that we applied to ||(u}), ||2g in Lemma 6, we can obtain the following:

XX

2
1l = (1 =20)[((e}*), . e)g + ((e5"),eD)g] = SN I = 0.

under the assumption that T = yh'*® and & is sufficiently small.
As 6 > 0, we can thus conclude from (10) that

max {le" 2+ e + eI+ e’} < et + 2,

I<n<J-1

Sobolev’s theorem then implies max;<,<; [l€" ||z < C(z? + h™T1)2.
By Lemma 3, we have ||u — W || o < A" u||yr+1. These all together yield

n n 2 r+1
glnang ”u - Mh“LOO SC@E +h.
n
IV. NUMERICAL EXPERIMENTS
In this section, we test the OSC scheme for Eq. (I) in the following form
Uy — Uy + ity + blul?u = 0. (1)

We refer to Ref. [4] for the details of the implementation of the scheme.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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e 6=0.1
2 - —9=0.15
" 9=02
2I 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-In(h)

FIG. 1. The curves of convergence order of scheme (3) with various 6.

In the following, numerical test is carried out to verify the performance of the scheme (3).
Generally, it is enough to choose r = 3. Thus, the Gauss points can be given as

1 h; .
Eik = E(xj—l +xj)+7]Ck7 j=12,...,N, k=1,2,
where
&1 =—

Throughout the following computations, we set

llelloe = max |le"loc = _ max _u;(x)) = ux;,t,)], (12)

for scheme (3).
Now, we compute the numerical solution of (11) for » = 2 in the domain [x;, xz] where,
x; = —50 and x; = 50, with initial conditions

u(x,0) = ug(x) = Ksech(Kx), u,(x,0)=u;(x) =iQKsech(Kx)

where K = 1/4and Q = —1/2 — /3/4.

To verify the convergence order of scheme (3), which is stated in Theorem 3.1, we choose
T = h% h = (xz — x.)/N and compute the numerical solution at ¢t = 2 for N = 100, 200,
300, 400, 500, and 800. The numerical solution for N = 800 is treated as the “exact” solution in
computing the error ||e|| in (12). Figure 1 plots the curves of convergence order of scheme (3)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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with different values of 6, where the solid lines are used for reference whose slope is exactly 4.
One can conclude from Fig. 1 that scheme (3) is convergent of order O(z? + h*) = O (h*) for
6 = 0.1, 0.15, and 0.2. Figures 2 and 3 plot the modulus of the numerical solutions from scheme
(B)withf = 0.15atr = 2, and for 0 < ¢ < 10, respectively.

V. CONCLUSIONS

In this article, we have considered an OSC scheme introduced in Ref. [4] for the Schrodinger
equation with wave operator (I). Under the conditions 8(x) > 0 and T = yh'*® for a posi-
tive number §, which can be arbitrarily small, we show that the method is convergent of order
O(z? + h'*!) even when the parameter 6 involved in the scheme lies in (0, i). This result partly
solves the problem proposed in Ref. [4]. However, the framework used in this article still cannot
be straightly applied to the case that & = 0. As mentioned in Ref. [4], “when 6 = 0, the situation
is more complicated.” It is interesting to get the whole picture of the convergence of the scheme
corresponding to different values of 6, and this will be our future study.

The authors are very grateful to the editor and two anonymous referees for their valuable
comments that have considerably improved this article.
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