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of the continuous equation are presented and one of them is new. The multi-symplectic
structure and MI are constructed for the equation. The discrete conservation laws of the
numerical method are analyzed. It is verified that the proposed MI can stably simulate
the Hamiltonian PDEs excellently over long-term. It is more accurate than some energy-
o . . preserving schemes though they are of the same accuracy. Moreover, the residual of mass
Schrédinger equation with wave operator . . e .
Multi-symplectic integrator is less than energy-preserving schemes under the same mesh partition in a long time.
Conservation laws © 2015 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we focus on the multi-symplectic integrator (MI) for (1 + 1)-dimensional nonlinear Schrédinger equations
with wave operator (NLSEWO) [1]

Wu — o, — i0u, + u+ Bluu=0, (x,t) € [x,%] x (0,T],
u(x,t) =ux+ (xr — xp),t), (1)
U(X,O) :fO(X)aut(Xa 0) :fl (X)7 Xe [XthL

where Wu = g — Uy + YUy, 2 = —1,0,7,0,4 and p are real constants, at the same time, f,(x) and f, (x) are given functions.
The equation describes the nonlinear interaction between two quasi-monochromatic waves. It is one of the non-resonant
interaction.

Proposition 1. The determined problem (1) satisfies the following conservation laws
e Energy invariant
E(t) = / (\uf\z + [uy® + i0ut, + Zuf* + g \u|4> dx = £(0). (2)
X
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e Mass invariant

o) = [ [t - i ~ yu - izjuf]dx = 0(0). 3)

Proof. We multiply Eq. (1) with u, and integrate over spatial domain
/Xr (UeeTl; — Unell; + YUpedly — 0Ty — i0U,T; + Aull; + plul*uilp)dx = 0. (4)
X
Next, we multiply the conjugation of Eq. (1) with u;
/XX' (Uil — Tty + YUpel + i00TU + (0L, + AUt + Bluf*Uue)dx = 0. (5)
1

Adding Eqgs. (4) and (5) with integration by part under the boundary conditions, we have

d [ L
& / {\utlz + [uy* + i0(utty) + Auf? +E|u|4} dx = 0.
t ), 2

This is just what we desire. Consequently, we prove another invariant:
Xr
/ [(u“ﬁ — Ul + YUy — ot T — 10T+ Auf® + Blul*) — (Ul — Ugell + YUyt + iU + 10U + Alu)* + Bluf*)|dx
Xl

— d " m TR TR ] 20
= /X, [(u[u —Tu) — p(uty) — ioul”| = 0.

The proof is completed. O

It is noted that the mass invariant (3) is new which have not appeared yet in existing literatures to our knowledge.

In [2], Guo proposed an implicit nonconservative difference scheme for NLSEWO. Based on the first conservative quantity,
Zhang et al. developed some energy-preserving schemes for it [3-5] in case of y = 6 = 2 = 0. Wang considered its Fourier
pseudo-spectral method under multi-symplectic context [6].

At the end of last century, MIs have been put forward and applied to large numbers of partial differential equations
(PDEs), such as wave equation [7-9], nonlinear Schrédinger-type equations [10,11], Dirac equation [12], Maxwell’s equations
[13], RLW equation [14], Klein-Gordon-Schrédinger equation [15]. The most important character of Mls is its multi-
symplecticity, and other conservative properties are preserved excellently despite of not exactly [16,12,17]. Recently,
numerical dispersion of MIs was analyzed [18]. In this article, we investigate an MI for NLSEWO and its global conservative
properties.

The rest of the paper is organized as follows: In Section 2, some preliminary knowledge is prepared for which will often be
used later. In Section 3, it presents the multi-symplectic structure and an MI for NLSEWO. The conservation properties of the
proposed numerical schemes are investigated in Section 4. In Section 5, we present some numerical examples and detailed
numerical results. Some conclusions are given to end this paper.

2. Preliminary knowledge

In this section, we give some notations and knowledge we will frequently be used. A uniform partition of the domain
under consideration is

xy=x,+kh, t=jr, k=0,1,2,....,K; j=0,1,...,],

where h =*and 7 = JI denote the spatial mesh size and temporal step length. u,{ is an approximation of u(x, t) at the node

(xk, t;), and Ui = u(xx, tj). Some notations about difference quotient:

i g J Jj i g i 4
wo= e T Wm0 Y — e
kx — h ’ kx — h ’ k+is - h ’ k2x — 2h ’
i1 it ) i1 11
w _u - u _ u”ifu;‘ — U jo_w -
kt — ’ kt — ’ k t ’ k2t — ’
T T T 27
s2ul — w! =2 ! SPul — Upy —2u Uy,
7k T2 o Y%Hk T P -

For any vectors u/, »/ € CX, the inner product and norms are defined as:

W, o)) = > ulel, ||’ = @ u),
k

2 . ) )
[w]ly = thjlui%lz, [u']] . = maxuj].
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Lemma 1. For all complex mesh functions {u,{} and {vi} with periodic or homogeneous boundary condition, we have the
following conclusions:

e Discrete Green formula:
(Geul, ) = (35U, 55 ); (6)
o (5xu,ul)y = —(ul, sxud) is purely imaginary.

. 2
e Re(d2u/ ul)) = %‘ _, where ‘Re’ denotes taking real part.

J
u
iz

These conclusion can be verified easily.

3. Construction of multi-symplectic scheme

In this section, we firstly describe the multi-symplectic structure and local conservation laws for the Eq. (1). In order to
rewrite the complex equations as a real one, we suppose that

ux,t) = @(x,t) + iy(x,t),

ur(x, t) = v(x, t) + iw(x, t),

U(x,t) = f(x,t) +ig(x,1),
where @(x,t),y(x,t), v(x,t), w(x,t),f(x,t),g(x,t) are all real-valued functions. Let z = (¢, y, v, w,f,g)", we have multi-sym-
plectic equations

W + Ve + 5+ O+ 50— fr = =20 — B@? +V7) g,

—UQ, + We +58, — 00, + 5wy — g = =i — B(@? +yP)Y,

—Q—5¢,=-v—3f, (7)

e~ Ju =W g,

—5P =30 +],

—SY =W g
Then, we can cast (7) into the multi-symplectic framework

Mz + Kz, = 7,5(2), (8)

where v/ is the gradient operator. The Hamiltonian function is

B

1., 2
S@) = —5 [M@* + ") +5(07 +97) + 0P + W — (f* +8%) +y(ef +wg))
[0« 1 0 1y 0] 0 0 20 -1 0
—2 0 01 0 1y -9 0 0% 0 -1
— A
M|t 0000 0 -5 0000 O
0 -100 0 0 0 -200 0 O
-2 0 00 0 O 1 000 0 O
|0 -3 00 0 0] 01 00 0 O

According to the multi-symplectic theoretical background, the multi-symplectic system (8) satisfies local conservation
laws as follows:

e Multi-symplectic conservation law

9] 9]

aa)+&1<:0, Y(x,t), (9)
where o and «k are pre-symplectic 2-forms

a):ocdgoAdn//+dgo/\dv+%dgo/\df+dz//Adw+%d¢/\dg,

K:Hd([)/\dl,b—d(pAdf+%d(pAdU—dl///\dg+%dl///\dw.

e Local energy conservation law
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0
E)tE() p F(z) =0, V(x,t), (10)

where the energy density E(z) and the energy flux F(z) are

+§(</’2 +92) + P+ WP+ g2+ (g — uf) |,

1
E@) =5 | 4@ +7)
F(z) = g((pw —yv) — % (V* +w?).
e Local momentum conservation law

0 0
ar1@) + 5, 6@ =0, (11)

where the momentum density I(z) and the momentum flux G(z) are
o
I2) = §<<pg uf) - v+ gw) - 27 +g2>,
G =2 (¢" +v7) -

It is well known that the local conservation laws imply that the density can be various, but the increment of the density in
time puts up with the flux in space.

((p 3+ ( + W+ f2+ g?) - (@wav)-

Applying the multi-symplectic midpoint integrator

M(S’;i +K axz’,f% =V,S (z’,f;) (12)
to the Hamiltonian PDEs (7), where z’kiﬁ (z;:f] + z’ﬁ) = (z’kf1 + zi%) =1 (z’kﬂ vzl 2+ z,{) one has
&y ‘/fﬁ? o0l + 5ol + 00 + ot o
= 4 I<+‘ - ﬂ{( k+—> (‘/’jl;z-> }(pjktle’
k+1 +0; WI+‘ +50; k+‘ — 00 I<+‘ +50; W;:rz‘ — % I:é (13)
= 4 kiz‘ - ﬁ{( k?l)z + ( k?l)z] /:31’
J k+1 - 7/;;21 —0 k+1 - Wlkiz“
5 +1 _ J+3 s _ +2'
k1 =1 VI =80

For the details of the method and the theoretical results on local conservation laws of the numerical method, we refer to
[12,19] and references therein.

The MI (13) is of second order both in time and space. After tedious calculation, by eliminating the introduced variables, it
can be reformulated into

; (53 Lyt otul,) - 1 > (om + S t) - > (azfu,HI + oaat] ) - i (52XLF*% + @ﬁ) + POadtt]

[L[Hz u1k+21+u1+]+u1 ] UUHZ u1+2 u/—— L[lﬂ +‘u§<+2 LI;:FZ +‘u,,_

k+1 k+1 k+2 k3| Tktd

’%] - 0. (14)

_1
2

By Taylor expansion, the MI (14) is of second order both in space and time, that is, the truncation error is T,{ =0(12 + h?).

4. Conservation laws analysis

In this section, the theoretical analysis about the MI (14) is derived. It is suggested that the MI can preserve the energy
and mass very well though they are not exactly.
Firstly, we investigate the discrete energy conservation law. To the purpose, we multiply the Eq. (14) with

(l[l+2 — F) Ll‘Hl U’{;l = Zfézt;i =T (5}% + 5;%) s

and sum over index k. Then, from the third formulate in Lemma 1, one can obtain the real part of the first term is
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2 2
o ot &
3 3
By Green formula, the real part of the second term is
. L i1 . : ; ” 2
—%Re<6§u’*% + ot u ) = Re( s+ i st — s ) = o wt]” ot (16)

The third term
2
hz [62tuk+] + 62[11 ]Zfézfu’ —2rlah2‘62tuk+l =—

is purely imaginary. Judged from the second conclusion of Lemma 1, the fifth term yhY", (92¢02:U3) 272113, is purely imaginary,
too. Now, we analyze the fourth term

’mewMWHf>waw+wxwwa
s o) () - () (o )

Its real part is
l—(;lh; [(u’,ﬁﬂ,’“ umulz;) (Ul:j] u’,:% u’"uﬂlﬂ
) - (A0 - ) (A ) (50

10 it g

_hhz |:<u]k+21ul ulkfl “;m k+1
- iony” [w;;(s o oal t]. (17)

The real part of the sixth term reads
+ j+3 j—1 JTE R ) + -1 + =
hReZ [(ulkfl ) + (ulk—z% + L[’kf%)] <ulk ‘- u;c 2) = AhRe; <ulk+21 + u;<+ ) <u;<+2’ ulkf%)
a2 )
:i(”u’*i - Hu”f ) (18)
3 3
The last term is
2B + + + + 112 -1 T 41 2 i1 - 1
Ea e e R R e G e L AR L )
K
+ i1 4 -1 1 j+3 + -3
= ’thk: |: u;<+2] N ‘u;(f% ‘u;(+1 u]k+2u;<+22 u]k+‘ ulk+lulk+£:|7
with the real part
B [ j—% S + +
25 HMHZ 1 B Hul 1 + [)'hREZ k+2 k+2ulk+2% ‘ulkf‘ u;<+z1 u]k+2‘
B, 1 /3 + + -1 |2
B j HHHZ 1 Hu/ hz )ulkfz I<+2 u;(fz ulké—
In summary, one has the following theorem:
Theorem 1. The Preissman MI (14) possesses the implicit discrete energy conservation law, i.e
1 B 2

gt gt hz }Lﬂkg :<+1 ‘5%%] 2, (19)

. ) . 2 L . . . .

where 72 = H(SEuJ*%H%Z + 10h2,<u’k:215 u;fj + ||6x uﬁz\ll + AHu“% ) +§Huﬁ% ) In particular, in case of § = 0, the conservation law is
explicit, that is,
(20)

=

gyi_gi— ... =
Furthermore, we have the implicit mass conservation law:
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Theorem 2. The Preissman MI (14) admits the implicit mass conservation law

ot g + -1 + j + - B + -3
T T2 “ulk+21 ‘ulkﬂ } (ulkf‘ - u;<+2) (ulk+21 k+2) hz “ulk+21 ‘ulkﬂ } ) (21)
) il T 112 . . . . . .
where Q% = hzk{ lﬂkiz, u’kiz, u::]b u;:j} yhzku’kzé;u’kz - iocHu“f . In particular, if g = 0, the conservation law is explicit,
that is,
oM —gt—...= g (22)

Proof. Taking inner product of (14) with
. iyl i1
Bul =" 4+ 2ul + 1 = 2<u;f2 T, 2),
the first term is
1 2 20 Vi 20 w7 — Lh +1 j AN v e N o e
jhzk: (5f uk+% + 5f uk%) (u)k + 2uk + ulk ) 2 z’: Kulk# I<+ ) (uk+‘ - u;<+%>] [(u‘;ur% + uk+%) + (ulur% + ulk%)} ?
whose imaginary part is as follows:

2 i 2 i1 T Tl
R D P TS T R -1 _ t2 0t a0t | S 2 2 _ 5472 2
T2 hZ [Lt/k+1uk+‘ u'JI<+]1’ll<+1 uk+‘u;<+] k+1ulk+%] T Z u;<+1ulk+1 o u;<+1ulk+1 u]k+%ulk+% 5fu;<+% k3 )|
k k

(23)
The second term
LoNms2 (0 4\ Bl L S s2puiBnl — 1 NG
— 520k (1) Bul = — g _oiBujBu] = 2y jox(Bu))
k K K
is real. The fourth term
i0 — i0 — P
-7 h " 6xxBujBuj, = — Sk hy (BuL]Bu{( - BuL]Bu{() :
k k
and the sixth term
A + N[ ] - 4 |°
Sl o) - (el 7] -] 1
are real, too. The third term is
. i i T Zloc i1
loch; (6zfui+% + 62tui_%) (ufz +1n, 2> = Z(u’kiﬁ —u ) <u§fj U )
Abstract the imaginary part from this term, one obtains
2a1 1 =
(Hu” % Hu’ ) (24)

Now, we analyze the fifth term

pordptt] (! +2ul + 1) = 23 DS [(uh - ) - (47 - )] (E + J)

Based on the second conclusion in Lemma 1, the first part of the above equality is purely imaginary, and the second part is
real. Therefore, the imaginary part of the term is
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10 CRRURRTA L)) @)

Finally, the last term is

s (WA WA o ) (7 h)
=gt ) (4 o)

The imaginary part of this part is

gzh; <‘u’,f+21

whd )

k+%

i) = |
i
4

il 12 1 1 il
- h’Z )lﬂkiz% ké ] u;:f] n ulké) (u]k:z% +u;<+21)
B 1P
*gh;ﬂ% [ ] - (26)

Summing over the equalities (23)-(26), one obtains the conclusion what one wishes.

5. Numerical examples

In this section, we investigate the theoretical analysis by a series of numerical experiments, including conservation prop-
erties and the accuracy of the schemes.

Example 1. Firstly, we consider a linear problem, i.e., § =0,
{ U — Uyx + U +1(Ue + Uy) + 3u =0, (x,t) € [0,27] x (0,50], 27)
u(x +2m,t) = u(x, t), u(x,0) = exp(ix), u¢(x,0) = —3iexp(ix).

In this case, the energy and mass are constants from Theorems 1 and 2. The exact solution of the determined problem is
u(x,t) = exp(i(x - 3t)), (28)

which is a plane wave propagating to the right with velocity » = 3. The amplitude of the wave is equal to 1. We simulate the
problem by the MI (14) under diverse mesh divisions. The left of Fig. 1 shows the maximum error for the real part of numeri-
cal solution against the space mesh numbers under T = 0.005 at t = 50, and the right one presents the maximum error for

the imaginary part of numerical solution against the time mesh numbers under h = {2%; at t = 50. The error is metered

ei = u,{ - U,{. The figures imply that the numerical solution of the MI (14) converges to the exact solution almost with the
same rate 2 both in time and space. Fig. 2 presents the phasic profiles of the numerical solution at every time step. It is sug-
gested that the curves are overlapped and always keeping in a unit circle. This exactly agrees with the exact solution (28).
Fig. 3 plots the residuals of energy (left) and mass (right) with 7 = 0.01,h = 2Z against time ¢ € [0,1000]. Judging from the
plots, the MI preserves both the energy and mass indeed in case of g = 0.

10 1o’
10° h=2 n/1024
b=
3
€
g E 107 E
g g
s £
I} = _.
8 5 107F
® 8
o
10°E
1 0’5 10 4 L L L L L
5 6 7 8 9 10 0 500 1000 1500 2000 2500 3000
Numbers of space mesh: IogZ(N) Numbers of time mesh: 500 xlog 2(Nl500)

Fig. 1. Numerical error vs. mesh numbers: left for space, right for time.
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Example 2. We simulate the following problem

Ut — Uy + U + (U + Uy) + U+ 2ufu = 0, (x, 1) € [0,27] x (0,200], (29)
u(x +2m,t) = u(x,t),u(x,0) = exp(ix), us(x, 0) = iexp(ix),
by MI (14) until T = 200. The problem admits the following exact solution
u(x,t) = exp(i(x + t)). (30)

The spatial-temporal domain is divided by T = 0.01, h = {%;. The real and imaginary part of the numerical solution at differ-
ent time are profiled in Fig. 4, and the residuals of mass and energy against time are presented in Fig. 5. From the figures, we

N

0571 1

imaginary part of u
o

-1 . . .
-1 -0.5 0 0.5 1

real part of u

Fig. 2. Phasic profiles of numerical solution at all time steps.

12 -12

x10° , x10

residual of mass
residual of energy

-8 |

0 200 400 600 800 1000 ‘o 200 400 600 800 1000

Fig. 3. Residuals of mass (left) and energy (right).

1 pe= T T — e g 1 e - T S o
o T T BT TR . e . o
* - o7 T oo o .. « * « x o
> * o7 + o ooy t. o t, w0 * = o7 +Tx O
=0, o + w0 T T o 5" T © 10 Dol + &0
* - = + o o * s o 4 o * * o + 2
- * o + P o ERE ° . * = o + o
05 - " t=200 o~ w0 T 051 ox =40 o+ «
. ¥ o * + + o b * " ) e
o te40 * - s o Lo . *0 N A * - I, o .
* a * o * o * a
o * o + -, h =80 * o
° . * * o + ° s o + * o P * * o s o
_ * o + *® o _ * o * o hs
=) -« + =) s o = =3
= 0 ° * o + ° x * o il =2 oF * o - o + 4
2 ° . 7 E - 5 ° o S h
- * * a £ a
t=80 = Eﬁeo N o . % . « . t=*130 ° = . N o .
+ o + ) * « o = " o
P * a o % % o *
- © - £l + © * * =] * © *0 + © *
+ © * o t=160 + o * o
05t + o + * *= o | —05} * ) " = + * |
=420 ©, o o+ + ° * * a - ] s % o o+ * ° *
+ o o *t © * * * o & o *+ oo *
X o - = o B x *
L+ Fxo P U, o a * =200 5, Fo_ o - O *
L) " o ¥ - B o & og P o
i) = o9 og, +1 - T = % Foa™ *o 07 o + © Fx, **
1 B P W RO o0 THLL . . . -1 . BT L) OO0 iy unt .
0 1 2 3 4 5 6 0 1 2 3 4 5 6
X X

Fig. 4. The real (left) and imaginary (right) parts of the numerical solution at different times.
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-8 -8
o X 10 i i i 2 X 10
1 1
i, £, |
g 2
) BN !
- o
] 2
2 -2 ‘ ‘ g 2 ‘
3 | g
« 4
N 2 |
-4 -4
5 . . . -5 . . .
0 50 100 150 200 0 50 100 150 200

Fig. 5. The residuals of mass (left) and energy (right).

can find that the curves of the real part always follow cosine evolution, and the imaginary part are sine. The residuals of mass
and energy take on periodic evolution. It is very interesting that the residual plots of the mass and energy are very similar.

Example 3. Next, we test the periodic initial valued problem
Uyt — Uy + T + 2|u’u = 0, (x, 1) € [0,27] x (0,100],
u(x + 27, t) = u(x,t), 31)
u(x,0) = V3 exp(6ix), u;(x,0) = —7+/3i exp(6ix),

We simulate the problem by the MI (14) and Wang’s energy preserving scheme

2 Vit |2 it L ik 2 Ly U
ofuf — 5 (om0, ) + ooyl + (u) "+ Juf ') - = 0. (32)
This scheme preserves the energy (2) exactly [4], that is,
21 ; 2 Y .
& = ||wh|" +5 (H(w,jl)x + |, ) +hY = €. (33)
K

We take T=100,h=2% t=0.01 in the example. The error of numerical solution which is measured
e = max l[ui® — |u(x, t;)|*| by schemes (14) and (32) is presented in Fig. 6, and the comparison of the conservative proper-
ties is plotted in Fig. 7.

From the figures, we can observe the following phenomena: i) The numerical solution of the multi-symplectic scheme
(14) is more accurate than that of Wang’s scheme (32) in the test. ii) Wang's scheme (32) preserves the energy up to

107'° scale, but not mass. The residuals of energy and mass for multi-symplectic scheme (14) are fluctuated periodically,
furthermore, they are very small relatively to their exact values, up to 10~ and 10~ scale, respectively.

Example 4. In the example, we consider the following problem [3]

Uy — Uy + il + 2[ufu =0, (x,t) € [-50,50] x (0,500], (34)
u(x,0) = Asech(Kx), u;(x,0) = ivAsech(Kx).
0.012
0.01f
%_ 0.008
o 0.006
? 0.004
0.002
10 20 40 . 60 80 100 % 20 40 . 60 80 100

Fig. 6. Comparison e, by schemes (14) and (32). Left for scheme (14), right for (32).
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The problem has the solution in the form
u(x, t) = Asech(Kx) exp(ivt), (35)

where A = [K|,v =1(~1+ V1 - 4K?). We take K = 1,v = —1 — % in the test.

The spatial-temporal domain is covered by lines x; = kh = 0.1k, t; = jT = 0.05j. The numerical results are reported in
Figs. 8-10. Fig. 8 is the solitary wave shape of |u| and its contour by MI (14). Fig. 9 is the error of the real part of the numerical
solution by schemes (14) and (32), and Fig. 10 is the residuals of conservative quantities. Here we have omitted the
counterpart of Fig. 8 by scheme (32) and the error of imaginary part because they are very similar.

Example 5. Finally, we consider the splitting of solitary wave

0.1 ; : . . X 10"

Residual of mass
o
o
£
Residual of energy

0 20 40 60 80 100 0 20 40 60 80 100

Residual of mass
Residual of energy

0 20 40 60 80 100 0 20 40 60 80 100
t t

Fig. 7. Conservative comparison. Upper for scheme (14), lower for scheme (32). Left for mass, right for energy.

200
180
160
140t
120t
- 100t
80
60
40+
20+

) 400 600

200

800 1000

X

Fig. 8. The solitary wave shape (left) and contours (right) of |u| by scheme (14).
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0.014 0.03
0.012 F 0.025 F 1
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Fig. 12. Profiles of the wave at different time stages.

{ Uge — Uy + itte + |uu = 0, (x, £) € [~40,40] x (0,20], 36)

u(x,0) = (1 +i)xexp(—10(1 — x)?), u,(x,0) = 0.

We simulate the problem by the MI (14) under the partition h = 0.05,7 = 0.02. The residuals of mass and energy are
reported in Fig. 11, and the profiles of the numerical solution are plotted in Fig. 12. From the pictures, it is observed that
the original wave splits into some lower waves rapidly, and more ripples bring up with the evolution of wave. Both the mass
and energy are nicely preserved.

6. Conclusion

In this study, we have used multi-symplectic midpoint rule to approximate the Schrédinger equation with wave operator.
The global conservative properties of the numerical method are investigated. For nonlinear problem, it usually can not keep
the mass and energy exactly. However, their residuals are very small over long-term. The proposed numerical method
demonstrates remarkable stable over long-term. Through numerical illustrations, it is observed that the numerical methods
is more accurate than other energy-preserving methods.
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