
Journal of Computational and Applied Mathematics 235 (2011) 1993–2005

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Discrete-time orthogonal spline collocation methods for the nonlinear
Schrödinger equation with wave operator
Shanshan Wang, Luming Zhang ∗, Ran Fan
College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

a r t i c l e i n f o

Article history:
Received 5 May 2010
Received in revised form 10 September
2010

Keywords:
Orthogonal spline collocation method
Nonlinear Schrödinger equation
Wave operator
Conserved quantity
Convergence
Stability

a b s t r a c t

In this paper, discrete-time orthogonal spline collocation schemes are proposed for the
nonlinear Schrödinger equation with wave operator. These schemes are constructed by
using orthogonal spline collocation approaches combined with finite difference methods.
The conservative property, the convergence, and the stability of these methods are
theoretically analyzed and also verified by extensive numerical experiments. In addition,
some interesting phenomena which require further theoretical analysis are discussed
numerically.
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1. Introduction

The nonlinear Schrödinger (NLS) equationwithwave operatorwas presented in [1] and its initial boundary value problem
(IBVP) was studied numerically in [2]. In this paper, we consider the following IBVP of the NLSE with wave operator

utt − uxx + iαut + β(x)q(|u|2)u = 0, −xL < x < xR, 0 < t ≤ T , (1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), −xL ≤ x ≤ xR, (2)
u|xL = u|xR = 0, 0 ≤ t ≤ T , (3)

where u(x, t) is an unknown complex function,α is a real constant, β(x) and q(s) are real functions, and i2 = −1. Computing
the inner product of (1) with ut and taking the real part, one could easily obtain the following conservation law:∫ xR

−xL
[|ut |

2
+ |ux|

2
+ β(x)Q (|u|2)]dx = const, (4)

where

Q (s) =

∫ s

0
q(z)dz. (5)

In [2], a finite difference scheme was formulated for problem (1)–(3); however, it was nonconservative, and its accuracy
was only of order O(τ + h2). It is desirable and natural to form numerical schemes keeping special properties of original
problems, such as conservation laws [3]. Therefore, [4–6] were devoted to constructing many conservative schemes,
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and they improved the accuracy order to O(τ 2 + h2). [7] applies the multisymplectic Fourier pseudospectral method
and discusses the conservative property. The aim of this paper is to study problem (1)–(3) numerically by discrete-time
orthogonal spline collocation (OSC) methods which also preserve the conservative property.

The OSC method, also known as the spline collocation method at Gauss points, was introduced by de Boor and Swartz
for an ordinary differential equation [8], while collocation methods for nonlinear parabolic problems were thoroughly
analyzed in [9]. Essentially, the OSC method determines an approximate solution in the form of a piecewise polynomial
with unknown parameters and requires it to satisfy the differential equation exactly at Gauss points which are the nodes
of the Gauss–Legendre quadrature rule. For more details, one may refer to [10] and references therein. In [11], discrete-
time OSCmethods were formulated for solutions of linear Schrödinger-type equations in two space variables. Semi-discrete
OSC methods were applied to solve the cubic NLS equation [12], extended to the Schrödinger equation with general power
nonlinearity, and also extended to the generalized NLS equation [13]. In [14], conservative OSC schemes were formulated
for the coupled nonlinear Klein–Gordon–Schrödinger equation.

This paper is organized as follows. In Section 2, we introduce some preliminaries. A discrete-time OSC scheme is
constructed in Section 3, and its conservative property is also discussed. In Section 4, the convergence and stability of the
OSCmethod is analyzed, and another OSC scheme is formulated and discussed in Section 5. Section 6 is devoted to verifying
the theoretical analysis by extensive numerical tests. Finally, in Section 7, some conclusions are made.

2. Preliminaries

For v a complex-valued function, we denote by v1 and v2 its real and imaginary parts, respectively. Given any space S of
functions, let R(S) denotes the set of all real-valued functions in S. Given a partition

Λ : xL = x0 < x1 < · · · < xN−1 < xN = xR

of Ω̄ = [xL, xR], let hj = xj − xj−1, j = 1, 2, . . . ,N , and h = maxj hj. A partition is said to be quasi-uniform (see [12] and
references therein) if there exists a finite positive number a such that

max
0⩽j⩽N

h
hj

⩽ a.

Let {tn}
J
n=0 be a partition of [0, T ], where tn = nτ and τ = T/J . Throughout, we use C to denote a generic positive constant

whose value is not necessarily the same on each occurrence.
Let M0(Λ) be the space of the piecewise Hermite onΩ defined by

M0(Λ) = {v ∈ C1(Ω̄) : v |[xj−1,xj] ∈ Pr} ∩ {v(xL) = v(xR) = 0},

where r ≥ 3 and Pr denotes the set of all polynomials of degree at most r .
Let G = {ξj,k}

N,r−1
j,k=1 be the set of Gauss points

ξj,k = xj−1 + hjζk,

where {ζk}
r−1
k=1 denote the nodes for the (r−1)-point Gaussian quadrature rule on the intervalΩ with correspondingweights

{wk}
r−1
k=1, wk > 0. For µ, ν defined on G, let (µ, ν)G and ‖µ‖G be given by

(µ, ν)G =

N−
j=1

hj

r−1−
k=1

wk(µν̄)(ξj,k),

and

‖µ‖G = (µ,µ)
1/2
G .

It can be shown from [9,15] that each µ ∈ M0(Λ) is uniquely defined by its values on G. Hence, M0(Λ) can be regarded as
a Hilbert space with (·, ·)G as an inner product.

For l a nonnegative integer, we denote by

‖µ‖H l(Ω) =

−
0⩽j⩽l

∂ jµ∂xj
2
L2(Ω)

1/2

the norm on the usual Sobolev space H l(Ω).
The following lemmas are required in the subsequent analysis.

Lemma 2.1 ([9,16]). For ν ∈ R(M0(Λ)), there exist positive constants α1 and α2 = α2(Λ) such that

α1‖ν‖G ≤ ‖ν‖L2(Ω) ≤ α2‖ν‖G. (6)
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Lemma 2.2 ([9,12,16,17]). For µ, ν ∈ R(M0(Λ)), we have

− (µxx, ν)G = −(µ, νxx)G, (7)

and

− (νxx, ν)G ⩾ ‖νx‖
2
L2(Ω) . (8)

Lemma 2.3 ([9,16]). Let ϕ ∈ Hr+3(Ω), and suppose that ψ : [0, T ] → R

M0(Λ)


satisfies

(ϕxx − ψxx)(ξj,k)− (ϕ − ψ)(ξj,k) = 0, j = 1, 2, . . . ,N, k = 1, 2, . . . , r − 1. (9)

Therefore, we have

‖ϕ − ψ‖L2(Ω) ≤ Chr+1
‖ϕ‖Hr+3(Ω). (10)

In this paper, we will make repeated use of the following inequality:

αβ ≤ εα2
+

1
4ε
β2, ε > 0,

where α, β ∈ R. Next, we introduce several difference quotient notations:

νnt =
νn+1

− νn

τ
, νnt̄ =

νn − νn−1

τ
, νntt̄ = (νnt )t̄ , νnt̂ =

νn+1
− νn−1

2τ
.

3. Discrete-time OSC scheme and conservative property

The continuous-time OSC approximation to the solution u of (1) is a differential map uh : [0, T ] → M0(Λ) such that

(uh)tt(ξj,k, t)− (uh)xx(ξj,k, t)+ iα(uh)t(ξj,k, t)+ β(ξj,k)q(|uh(ξj,k, t)|2)uh(ξj,k, t) = 0,

j = 1, 2, . . . ,N, k = 1, 2, . . . , r − 1, (11)

for t ∈ (0, T ].
In order to work out the approximate solution of (1), one might discretize (11) in time by finite difference techniques.

Some concise and effective finite difference schemes in [6] could be written together in the following class of scheme:

(Un
j )t t̄ − (1 − 2θ)(Un

j )xx̄ − θ(Un+1
j + Un−1

j )xx̄ + iα(Un
j )t̂ + βj

Q (|Un+1
j |

2)− Q (|Un−1
j |

2)

|Un+1
j |2 − |Un−1

j |2

Un+1
j + Un−1

j

2
= 0, (12)

where θ ≥ 0 and Un
j is the approximation of u(xj, tn). Scheme (12) is just Scheme B in [6] if θ = 0, and Scheme C if θ = 0.5.

Now we combine (11) and (12) to construct the discrete-time OSC scheme as follows:
1
τ 2
(un+1

h − 2un
h + un−1

h )− (1 − 2θ)(un
h)xx − θ [(un+1

h )xx + (un−1
h )xx] +

iα
2τ
(un+1

h − un−1
h )

+ β
Q (|un+1

h |
2)− Q (|un−1

h |
2)

|un+1
h |2 − |un−1

h |2

un+1
h + un−1

h

2


(ξj,k) = 0,

j = 1, 2, . . . ,N, k = 1, 2, . . . , r − 1, n = 1, 2, . . . , J − 1, (13)

where u0
h and u1

h can be prescribed by approximating the initial conditions (2) using Hermite piecewise interpolations.

Theorem 3.1. The OSC scheme (13) admits the following conservation law:

En
= ‖(un

h)t‖
2
G − (1 − 2θ)[((un+1

h,1 )xx, u
n
h,1)G + ((un+1

h,2 )xx, u
n
h,2)G]

− θ [((un+1
h,1 )xx, u

n+1
h,1 )G + ((un+1

h,2 )xx, u
n+1
h,2 )G + ((un

h,1)xx, u
n
h,1)G + ((un

h,2)xx, u
n
h,2)G]

+
1
2

N−
j=1

hj

r−1−
k=1

wkβ(ξj,k)[Q (|un+1
h (ξj,k)|

2)+ Q (|un
h(ξj,k)|

2)]

= En−1
= · · · = E0

= const, (14)

where un
h,1 and un

h,2 are the real and imaginary parts of un
h , respectively.
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Proof. Computing the inner product of (13) with (un+1
h − un−1

h ) and taking the real part, we obtain

I1 + I2 + I3 + I4 + I5 = 0, (15)

where

I1 = Re


1
τ 2
(un+1

h − 2un
h + un−1

h , un+1
h − un−1

h )G


=

1
τ 2
(‖un+1

h − un
h‖

2
G − ‖un

h − un−1
h ‖

2
G) = ‖(un

h)t‖
2
G − ‖(un−1

h )t‖
2
G,

I2 = Re{−(1 − 2θ)((un
h)xx, u

n+1
h − un−1

h )G},

I3 = Re{−θ((un+1
h )xx + (un−1

h )xx, un+1
h − un−1

h )G},

I4 = Re

iα
2τ
(un+1

h − un−1
h , un+1

h − un−1
h )G


= 0,

I5 = Re



β(x)

Q (|un+1
h |

2)− Q (|un−1
h |

2)

|un+1
h |2 − |un−1

h |2

un+1
h + un−1

h

2
, un+1

h − un−1
h


G


=

1
2

N−
j=1

hj

r−1−
k=1

wkβ(ξj,k)[Q (|un+1
h |

2)− Q (|un−1
h |

2)](ξj,k).

Setting un
h = un

h,1 + iun
h,2, we can obtain

I2 = −(1 − 2θ)
N−
j=1

hj

r−1−
k=1

wk[(un
h,1)xx(u

n+1
h,1 − un−1

h,1 )+ (un
h,2)xx(u

n+1
h,2 − un−1

h,2 )](ξj,k). (16)

It follows from Lemma 2.2 and (16) that

I2 = −(1 − 2θ)[((un+1
h,1 )xx, u

n
h,1)G + ((un+1

h,2 )xx, u
n
h,2)G − ((un

h,1)xx, u
n−1
h,1 )G − ((un

h,2)xx, u
n−1
h,2 )G]. (17)

Similarly, one could obtain

I3 = −θ [((un+1
h,1 )xx, u

n+1
h,1 )G + ((un+1

h,2 )xx, u
n+1
h,2 )G − ((un−1

h,1 )xx, u
n−1
h,1 )G − ((un−1

h,2 )xx, u
n−1
h,2 )G]. (18)

Therefore, (14) can be easily derived from (15), (17) and (18). �

4. Convergence and stability

For verifying the convergence of scheme (13), first we need the following lemma [14].

Lemma 4.1. Let ν ∈ R(M0(Λ)). If θ > 1/2, then

Rτ ≤ Qτ ; (19)

else, if 0 ≤ θ ≤ 1/2, then

R̂τ ≤ Qτ , (20)

where

Qτ = ‖νn−1
t ‖

2
G − (1 − 2θ)(νnxx, ν

n−1)G,

Rτ = ‖νn−1
t ‖

2
G −

1
2
(1 − 2θ)[(νnxx, ν

n)G + (νn−1
xx , νn−1)G],

R̂τ = ‖νn−1
t ‖

2
G +

1
2
(1 − 2θ)[(νnxx, ν

n)G + (νn−1
xx , νn−1)G].

Theorem 4.1. Suppose that θ ≥ 1/4, q(s) ∈ C1, u(x, t) ∈ C2,4
∩ L2(Hr+3) is the solution of (1), and ∂u

∂t ,
∂2u
∂t2

∈ L2(Hr+3), while
un
h ∈ M0(Λ) (n = 0, 1, . . . , J) is the solution of (13). If W : [0, T ] → M0(Λ) is defined by (9), and ‖(u0

h −W 0)t‖
2
L2(Ω)

, ‖u0
h −

W 0
‖
2
H1(Ω)

and ‖u1
h − W 1

‖
2
H1(Ω)

are O(τ 2 + hr+1)2, then, for τ and h sufficiently small, we have

max
1≤n≤J

‖un
− un

h‖L2(Ω) = O(τ 2 + hr+1). (21)
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Proof. Substituting un(x) = u(x, nτ) into (13), it follows from Taylor’s theorem that
1
τ 2
(un+1

− 2un
+ un−1)− (1 − 2θ)un

xx − θ(un+1
xx + un−1

xx )+
iα
2τ
(un+1

− un−1)

+ β
Q (|un+1

|
2)− Q (|un−1

|
2)

|un+1|2 − |un−1|2

un+1
+ un−1

2


(ξj,k) = σ n(ξj,k), (22)

where σ n(ξj,k) = O(τ 2). Let ên = un
− W n, en = un

h − W n; then un
− un

h = ên − en. Setting

G(un) =
Q (|un+1

|
2)− Q (|un−1

|
2)

|un+1|2 − |un−1|2
,

one may get from (13) and (22) that
1
τ 2
(en+1

− 2en + en−1)− (1 − 2θ)enxx − θ(en+1
xx + en−1

xx )+
iα
2τ
(en+1

− en−1)


(ξj,k)

=


1
τ 2
(ên+1

− 2ên + ên−1)− (1 − 2θ)ênxx − θ(ên+1
xx + ên−1

xx )+
iα
2τ
(ên+1

− ên−1)− σ n

+ βG(un)
ên+1

+ ên−1
− en+1

− en−1

2
+ β(G(un)− G(un

h))
un+1
h + un−1

h

2


(ξj,k). (23)

Computing the inner product of (23) with (en+1
− en−1) and taking the real part, similar to the proof of Theorem 3.1,

we have

‖ent ‖
2
G − ‖en−1

t ‖
2
G − (1 − 2θ)[((en+1

1 )xx, en1)G + ((en+1
2 )xx, en2)G − ((en1)xx, e

n−1
1 )G − ((en2)xx, e

n−1
2 )G]

− θ [((en+1
1 )xx, en+1

1 )G + ((en+1
2 )xx, en+1

2 )G − ((en−1
1 )xx, en−1

1 )G − ((en−1
2 )xx, en−1

2 )G] = II1 + II2 + II3, (24)

where

II1 = Re


1
τ 2
(ên+1

− 2ên + ên−1)− (1 − 2θ)ênxx − θ(ên+1
xx + ên−1

xx )+
iα
2τ
(ên+1

− ên−1)− σ n, en+1
− en−1


G



= τ |(êntt̄ − (1 − 2θ)ênxx − θ(ên+1
xx + ên−1

xx )+
iα
2
(ênt + ên−1

t )− σ n, ent + en−1
t )G|

≤ Cτ(‖êntt̄‖
2
G + ‖ên+1

xx ‖
2
G + ‖ênxx‖

2
G + ‖ên−1

xx ‖
2
G + ‖ênt ‖

2
G + ‖ên−1

t ‖
2
G + ‖σ n

‖
2
G + ‖ent ‖

2
G + ‖en−1

t ‖
2
G),

II2 = Re


βG(un)

ên+1
+ ên−1

− en+1
− en−1

2
, en+1

− en−1


G


≤ Cτ(‖ên+1

‖
2
G + ‖ên−1

‖
2
G + ‖en+1

‖
2
G + ‖en−1

‖
2
G + ‖ent ‖

2
G + ‖en−1

t ‖
2
G),

II3 = Re



β(G(un)− G(un

h))
un+1
h + un−1

h

2
, en+1

− en−1


G


≤
τ

2

 N−
j=1

hj

r−1−
k=1

wkβ(ξj,k)[G(un(ξj,k))− G(un
h(ξj,k))][(u

n+1
h + un−1

h )(ēnt + ēn−1
t )](ξj,k)

 .
According to the definition ofW n, one can easily obtain ênxx = ên. So

II1 ≤ Cτ

‖êntt̄‖

2
G + ‖ên+1

‖
2
G + ‖ên‖2

G + ‖ên−1
‖
2
G + ‖ênt ‖

2
G + ‖ên−1

t ‖
2
G + ‖σ n

‖
2
G + ‖ent ‖

2
G + ‖en−1

t ‖
2
G


. (25)

Since q(s) ∈ C1 and also thanks to the continuity of un
h, it is easy to prove that

II3 ≤ Cτ(‖ên+1
‖
2
G + ‖en+1

‖
2
G + ‖ên−1

‖
2
G + ‖en−1

‖
2
G + ‖ent ‖

2
G + ‖en−1

t ‖
2
G). (26)

Additionally, one may prove that

‖en+1
‖
2
G − ‖en−1

‖
2
G ≤ Cτ(‖en+1

‖
2
G + ‖en−1

‖
2
G + ‖ent ‖

2
G + ‖en−1

t ‖
2
G). (27)
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Therefore, it follows from (24)–(27) that

‖ent ‖
2
G − ‖en−1

t ‖
2
G + ‖en+1

‖
2
G − ‖en−1

‖
2
G

− (1 − 2θ)[((en+1
1 )xx, en1)G + ((en+1

2 )xx, en2)G − ((en1)xx, e
n−1
1 )G − ((en2)xx, e

n−1
2 )G]

− θ [((en+1
1 )xx, en+1

1 )G + ((en+1
2 )xx, en+1

2 )G − ((en−1
1 )xx, en−1

1 )G − ((en−1
2 )xx, en−1

2 )G]

≤ Cτ(‖êntt̄‖
2
G + ‖ên+1

‖
2
G + ‖ên‖2

G + ‖ên−1
‖
2
G + ‖ênt ‖

2
G + ‖ên−1

t ‖
2
G + ‖σ n

‖
2
G + ‖en+1

‖
2
G + ‖en−1

‖
2
G

+ ‖ent ‖
2
G + ‖en−1

t ‖
2
G). (28)

Applying Lemma 2.3, we have

‖ênt ‖G =

 1τ
∫ τ

0

∂ ê
∂t
(nτ + s)ds


G

≤
1
τ

∫ τ

0

∂ ê∂t (nτ + s)


G

ds

≤ Chr+1

∂u∂t

L∞(Hr+3)

+ ‖u‖L∞(Hr+2)


≤ Chr+1, (29)

and

‖êntt̄‖G =

 1
τ 2

∫ τ

−τ

(τ − |s|)
∂2ê
∂t2

(nτ + s) ds


G

≤
1
τ

∫ τ

−τ

∂2ê∂t2 (nτ + s)


G

ds

≤ Chr+1

∂2u∂t2

L∞(Hr+3)

+

∂u∂t

L∞(Hr+2)

+ ‖u‖L∞(Hr+2)


≤ Chr+1. (30)

It follows from Lemmas 2.1, 2.3 and (28)–(30) that

‖ent ‖
2
G − ‖en−1

t ‖
2
G + ‖en+1

‖
2
G − ‖en−1

‖
2
G

− (1 − 2θ)[((en+1
1 )xx, en1)G + ((en+1

2 )xx, en2)G − ((en1)xx, e
n−1
1 )G − ((en2)xx, e

n−1
2 )G]

− θ [((en+1
1 )xx, en+1

1 )G + ((en+1
2 )xx, en+1

2 )G − ((en−1
1 )xx, en−1

1 )G − ((en−1
2 )xx, en−1

2 )G]

≤ Cτ(‖en+1
‖
2
G + ‖en−1

‖
2
G + ‖ent ‖

2
G + ‖en−1

t ‖
2
G + O(τ 2 + hr+1)2). (31)

Note that ‖ent ‖
2
G = ‖(en1)t‖

2
G +‖(en2)t‖

2
G, where en1 and en2 are real and imaginary parts of en, respectively. If θ > 1/2, applying

Lemmas 4.1 and 2.2, we have

‖(en1)t‖
2
G − (1 − 2θ)((en+1

1 )xx, en1)G − θ [((en+1
1 )xx, en+1

1 )G + ((en1)xx, e
n
1)G]

≥ ‖(en1)t‖
2
G −

1
2
[((en+1

1 )xx, en+1
1 )G + ((en1)xx, e

n
1)G]

≥ ‖(en1)t‖
2
G +

1
2
(‖(en+1

1 )x‖
2
G + ‖(en1)x‖

2
G) ≥ ‖(en1)t‖

2
G ≥ 0. (32)

In like manner, if 1/4 ≤ θ ≤ 1/2, one could get

‖(en1)t‖
2
G − (1 − 2θ)((en+1

1 )xx, en1)G − θ [((en+1
1 )xx, en+1

1 )G + ((en1)xx, e
n
1)G]

≥ ‖(en1)t‖
2
G +

1
2
(4θ − 1)(‖(en+1

1 )x‖
2
G + ‖(en1)x‖

2
G) ≥ ‖(en1)t‖

2
G ≥ 0. (33)

Similarly, (32) and (33) also hold for en2. Let

ωn
= ‖ent ‖

2
G + ‖en+1

‖
2
G + ‖en‖2

G − (1 − 2θ)[((en+1
1 )xx, en1)G + ((en+1

2 )xx, en2)G]

− θ [((en+1
1 )xx, en+1

1 )G + ((en+1
2 )xx, en+1

2 )G + ((en1)xx, e
n
1)G + ((en2)xx, e

n
2)G]. (34)

Thus, if θ ≥ 1/4, one can obtain from (31)–(34) that

ωn
− ωn−1

≤ Cτ(ωn
+ ωn−1)+ Cτ(τ 2 + hr+1)2. (35)

Therefore, if follows from the discrete Gronwall inequality (see [18] and references therein) that

max
1≤n⩽J−1

ωn
≤


ω0

+ τ

J−1−
k=1

C(τ 2 + h4)2


exp(C(J − 1)τ ) ≤ C(ω0

+ (τ 2 + h4)2). (36)
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Using Lemma 2.1 in [12], we get ω0
= O(τ 2 + hr+1)2, so

max
1≤n≤J

‖en‖G = O(τ 2 + hr+1).

Therefore, the triangle inequality, Lemmas 2.1 and 2.3 yield the desired result (21). �

Theorem 4.2. Assume that θ ≥ 1/4 and that the conditions of Theorem 4.1 are satisfied. Then scheme (13) is unconditionally
stable.

Proof. Let ηn(x) be the error of un
h(x), and set ũn

h(x) = un
h(x)− ηn(x). Then we have

1
τ 2
(ηn+1

− 2ηn + ηn−1)− (1 − 2θ)ηnxx − θ(ηn+1
xx + ηn−1

xx )+
iα
2τ
(ηn+1

− ηn−1)


(ξj,k)

=


β
Q (|ũn+1

h |
2)− Q (|ũn−1

h |
2)

|ũn+1
h |2 − |ũn−1

h |2

ũn+1
h + ũn−1

h

2
− β

Q (|un+1
h |

2)− Q (|un−1
h |

2)

|un+1
h |2 − |un−1

h |2

un+1
h + un−1

h

2


(ξj,k). (37)

Computing the inner product of (37) with (ηn+1
− ηn−1) and taking the real part, by a proof similar to that of Theorem 4.1,

one can obtain

max
1≤n≤J

‖ηn‖G ≤ Cω̃0,

where

ω̃0
= ‖η0t ‖

2
G + ‖η1‖2

G + ‖η0‖2
G − (1 − 2θ)[((η11)xx, η

0
1)G + ((η12)xx, η

0
2)G]

− θ [((η11)xx, η
1
1)G + ((η12)xx, η

1
2)G + ((η01)xx, η

0
1)G + ((η02)xx, η

0
2)G],

and ηn1 and ηn2 are the real and imaginary parts of ηn, n = 0, 1.
According to [19,20] and references therein, this theorem expresses the generalized stability of the numerical

scheme. �

5. Another scheme

In order to test the OSC scheme proposed in this paper, we adopt the following form of Eq. (1) [4,6,7]:

utt − uxx + iut + b|u|2u = 0, (38)

where b is a constant. Consequently, the corresponding OSC scheme might be written as
1
τ 2
(un+1

h − 2un
h + un−1

h )− (1 − 2θ)(un
h)xx − θ [(un+1

h )xx + (un−1
h )xx] +

i
2τ
(un+1

h − un−1
h )

+
b
4
(|un+1

h |
2
+ |un−1

h |
2)(un+1

h + un−1
h )


(ξj,k) = 0,

j = 1, 2, . . . ,N, k = 1, 2, . . . , r − 1, n = 1, 2, . . . , J − 1. (39)

Since (39) is a nonlinear scheme, one should utilize some iterative method to solve it, such as
1
τ 2
(un+1(s+1)

h − 2un
h + un−1

h )− (1 − 2θ)(un
h)xx − θ [(un+1(s+1)

h )xx + (un−1
h )xx] +

i
2τ
(un+1(s+1)

h − un−1
h )

+
b
4
(|un+1(s)

h |
2
+ |un−1

h |
2)(un+1(s+1)

h + un−1
h )


(ξj,k) = 0,

j = 1, 2, . . . ,N, k = 1, 2, . . . , r − 1, n = 1, 2, . . . , J − 1, (40)

where s denotes the s-th iteration at a given time step, and the iteration continues until the condition

max
0≤j≤N

|un+1(s+1)
h (xj)− un+1(s)

h (xj)| < 10−6 (41)

is reached. For each time step, the initial iterative function un+1(0)
h can be chosen as un+1(0)

h = un
h. Applying Taylor’s theorem,

one could get from (2) and (38) that

u(x, τ ) = z(x)+ O(τ 3),

z(x) = u0(x)+ τu1(x)+
τ 2

2


∂2u0

∂x2
− iu1 − b|u0|

2u0


(x).
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Consequently, u0
h and u1

h can be prescribed by approximating u0(x) and z(x) using Hermite piecewise cubic interpolations,
respectively.

It is well known that the iterative scheme requires more computational time; therefore, we construct another OSC
scheme especially for (38), as follows:

1
τ 2
(un+1

h − 2un
h + un−1

h )− (1 − 2θ)(un
h)xx − θ [(un+1

h )xx + (un−1
h )xx] +

i
2τ
(un+1

h − un−1
h )

+
b
2
|un

h|
2(un+1

h + un−1
h )


(ξj,k) = 0, j = 1, 2, . . . ,N, k = 1, 2, . . . , r − 1, n = 1, 2, . . . , J − 1. (42)

It is a linear scheme, so one could work it out directly without any annoying iteration. Moreover, it is gratifying that this
procedure also keeps the conservative property.

Theorem 5.1. The OSC scheme (42) admits the following conservation law:

En
= ‖(un

h)t‖
2
G − (1 − 2θ)[((un+1

h,1 )xx, u
n
h,1)G + ((un+1

h,2 )xx, u
n
h,2)G] − θ [((un+1

h,1 )xx, u
n+1
h,1 )G + ((un+1

h,2 )xx, u
n+1
h,2 )G

+ ((un
h,1)xx, u

n
h,1)G + ((un

h,2)xx, u
n
h,2)G] +

b
2

N−
j=1

hj

r−1−
k=1

wk|un+1
h (ξj,k)|

2
|un

h(ξj,k)|
2

= En−1
= · · · = E0

= const, (43)

where un
h,1 and un

h,2 are the real and imaginary parts of un
h , respectively.

Theorem 5.2. Suppose that θ ≥ 1/4, u(x, t) ∈ C2,4
∩ L2(Hr+3) is the solution of (1), and ∂u

∂t ,
∂2u
∂t2

∈ L2(Hr+3), while
un
h ∈ M0(Λ) (n = 0, 1, . . . , J) is the solution of (42). If W : [0, T ] → M0(Λ) is defined by (9), and ‖(u0

h −W 0)t‖
2
L2(Ω)

, ‖u0
h −

W 0
‖
2
H1(Ω)

and ‖u1
h − W 1

‖
2
H1(Ω)

are O(τ 2 + hr+1)2, then, for τ and h sufficiently small, we have

max
1≤n≤J

‖un
− un

h‖L2(Ω) = O(τ 2 + hr+1). (44)

Theorem 5.3. Assume that θ ≥ 1/4 and that the conditions of Theorem 5.2 are satisfied. Then scheme (42) is unconditionally
stable.

The proofs of Theorems 5.1–5.3 are quite similar to those of Theorems 3.1, 4.1 and 4.2, respectively, and are omitted.

6. Numerical experiments

In this section, some numerical tests are carried out to verify the performance of our schemes. Generally, it is sufficient
to chose r = 3. Thus, the Gauss points can be given as

ξj,k = xj−1 + hjζk, j = 1, 2, . . . ,N, k = 1, 2,

where

ζ1 = (3 −
√
3)/6, ζ2 = (3 +

√
3)/6.

Let {φj}
2N
j=1 be basis functions of R(M0(Λ)), so one may write

un
h(x) =

2N−
j=1

ûn
j φ

n
j (x), n = 0, 1, 2, . . . , J, (45)

where ûn
j (j = 1, 2, . . . , 2N, n = 0, 1, 2, . . . , J) are unknown coefficients which should be worked out. Setting

u⃗ n
= [ûn

1, û
n
2, . . . , û

n
2N ]

⊤,

and substituting (45) into (40), one could obtain

Au⃗ n+1(s+1)
= d⃗ n+1(s), (46)

where d⃗ n+1(s) is a vector of un+1(s)
h , un

h and un−1
h . The matrix A has a special structure commonly known as almost block

diagonal (ABD; see [15] and references therein), so the system of algebraic equations (46) could be solved by using the
COLROW algorithm [21–23]. Scheme (42) could be treated in a similar way.
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Fig. 1. The curves of convergence order of scheme (13) with various θ .

Fig. 2. The curves of convergence order of scheme (42) with various θ .

Throughout the computation, we set

‖e‖∞ = max
1≤n≤J

‖en‖∞ = max
0≤j≤N,1≤n≤J

|un
h(xj)− u(xj, tn)|,

and s ≤ 10 for scheme (40).
Consider the soliton solution of Eq. (38) with b = −2 as follows [7]:

u(x, t) = A sech(Kx)eiΩt ,

where

A = |K |, Ω =
1
2
(−1 ±


1 − 4K 2).

Consequently, the initial condition (2) might be given as

u0(x) = A sech(Kx), u1(x) = iΩA sech(Kx).

Hereafter, we take K = 1/4 andΩ = −1/2 −
√
3/4.
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Fig. 3. |u| of scheme (13) with θ = 0.0,N = 250 at T = 2.

Fig. 4. |u| of scheme (13) with θ = 0.0,N = 280 at T = 2.

6.1. Convergence

First, we verify the convergence orders of scheme (13) and (42) which are stated in Theorems 4.1 and 5.2. We choose
xL = −50, xR = 50, T = 2, τ = h2, h = (xR − xL)/N and N = 160, 200, 250, 320, 360, 400 and 500.

Figs. 1 and 2, respectively, plot the curves of convergence orders of schemes (13) and (42) with different values of θ ,
where the solid lines are used for reference; their slopes are exactly 4. One can conclude from Fig. 1 that scheme (13) is
convergent of order O(τ 2 + h4) when θ ≥ 0.1, and when θ = 0, this scheme is convergent of that fixed order if N ≥ 320.
The same conclusion could be made for scheme (42) from Fig. 2.

We are amazed at this phenomenon because the theoretical analysis declares that these schemes should be convergent
of order O(τ 2 + h4) if θ ≥ 1/4. Up to now, the only cause we can think of is that the condition θ ≥ 1/4 in Theorems 4.1 and
5.2 might be too severe and unnecessary. We expect that there is some way to improve the theoretical analysis and to find
a more reasonable condition instead of the severe one.

6.2. Stability

In this subsection, we attempt to investigate the stability of the two OSC schemes. So we slightly perturb the initial
function u0

h(x) as follows:

ũ0
h(x) = u0(x)

[
1 +

sin(x)
1000

]
. (47)
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Fig. 5. |u| of scheme (13) with θ = 0.0,N = 290 at T = 2.

Fig. 6. |u| of scheme (13) with θ = 0.1,N = 250 at T = 2.

Numerical solutions are calculated by the OSC schemes proposed in this paper with u0
h and ũ0

h , respectively. Then the
numerical solution un

h and the perturbed one ũn
h are compared. The problem is solved for x ∈ [−50, 50] and t ∈ [0, 2],

and we choose τ = h2.
Figs. 3–6 plot the modulus of the exact, the numerical, and the perturbed numerical solutions at T = 2, and the

approximate solutions are computed by scheme (13) with θ = 0.0 and 0.1. The plots with θ = 0.2, 0.25, 0.5, 1.0, 2.0
and N = 250 at T = 2 are similar to Fig. 6. Therefore, we may conclude from these figures that scheme (13) with θ = 0.0
should be unstable when τ/h is greater than 100/290, and this scheme with θ ≥ 0.1 might be stable. Similar plots could be
given by scheme (42), so the same conclusion can be made. Again the phenomenon when θ < 1/4 is outside the theoretical
analysis, i.e., Theorems 4.2 and 5.3.

6.3. Long-term computation

Hereafter, we compute the numerical solution within [xL, xR] = [−50, 50] until T = 10, and we choose h = 0.2
and τ = 0.04. Comparisons of numerical results of schemes (13) and (42) with various θ are listed in Tables 1 and 2,
respectively, where dE = |En

− E0
|/|E0

|. It can be seen from these tables that schemes (13) and (42) are efficient for long-
term computation either for θ ≥ 1/4 or for θ < 1/4, and the linear scheme (42) takes much less time than the nonlinear
one (13), though they have the same accuracy. Each scheme preserves its conserved quantity perfectly.
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Fig. 7. The solitary wave |u| of scheme (13) with θ = 0.25.

Fig. 8. The solitary wave |u| of the exact solution.

Table 1
Comparisons of scheme (13) with various θ .

θ = 0.0 θ = 0.1 θ = 0.2 θ = 0.25 θ = 0.5 θ = 1.0 θ = 2.0

‖e‖∞ 3.9670e−4 4.1466e−4 4.3264e−4 4.4165e−4 4.8683e−4 5.7783e−4 7.6216e−4
dE 3.1393e−9 2.9922e−9 2.8675e−9 2.8118e−9 2.5831e−9 2.2823e−9 1.9772e−9
CPU(s) 801.515 801.735 809.266 806.515 804.360 807.468 812.109

Table 2
Comparisons of scheme (42) with various θ .

θ = 0.0 θ = 0.1 θ = 0.2 θ = 0.25 θ = 0.5 θ = 1.0 θ = 2.0

‖e‖∞ 3.9674e−4 4.1469e−4 4.3268e−4 4.4169e−4 4.8687e−4 5.7787e−4 7.6222e−4
dE 3.1399e−9 2.9929e−9 2.8681e−9 2.8125e−9 2.5839e−9 2.2831e−9 1.9784e−9
CPU(s) 459.500 447.281 449.343 450.110 449.562 463.171 463.968

The solitary wave computed by scheme (13) with θ = 0.25 is plotted in Fig. 7, and the exact soliton is shown in Fig. 8.
The plots given by schemes (13) and (42) with different values of θ are quite similar.
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7. Conclusion

In this paper, discrete-time OSC schemes have been constructed for the nonlinear Schrödinger equation with wave
operator. The conservation, convergence, and stability of thesemethods have been analyzed. Finally, a greatmany numerical
tests have been carried out to confirm the theoretical results.

It is worth mentioning that the present theoretical analysis could only predict the state when θ ≥ 1/4; see also
[14,16]. However, in our numerical experiments, the phenomenon when θ < 1/4 is fascinating. When θ = 0.1 and 0.2, the
numerical exhibition is as good as that when θ ≥ 1/4, so we believe that the theoretical results might be generalized to
θ > 0. And when θ = 0, the situation is more complicated. Therefore, further strict theoretical work is necessary.

References

[1] K. Matsuuchi, Nonlinear interactions of counter-travelling waves, J. Phys. Soc. Japan 48 (5) (1980) 1746–1754.
[2] B.L. Guo, H.X. Liang, On the problem of numerical calculation for a class of the system of nonlinear Schrödinger equationwithwave operator, J. Numer.

Meth. Comput. Appl. 4 (1983) 176–182.
[3] F. Zhang, V.M. Pérez-García, L. Vázquez, Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme, Appl. Math. Comput. 71

(1995) 165–177.
[4] L.M. Zhang, X.G. Li, A conservative finite difference scheme for a class of nonlinear Schrödinger equation with wave operator, Acta Mathematica

Scientia 22A (2) (2002) 258–263.
[5] L.M. Zhang, Q.S. Chang, A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator, Appl. Math. Comput. 145

(2003) 603–612.
[6] T.C. Wang, L.M. Zhang, Analysis of some new conservative schemes for nonlinear Schrödinger equation with wave operator, Appl. Math. Comput. 182

(2006) 1780–1794.
[7] J. Wang, Multisymplectic Fourier pseudospectral method for the nonlinear Schrödinger equations with wave operator, J. Comput. Math. 25 (1) (2007)

31–48.
[8] C. de Boor, B. Swartz, Collocation at Gaussian points, SIAM J. Numer. Anal. 10 (4) (1973) 582–606.
[9] J. Douglas Jr., T. Dupont, Collocation methods for parabolic equation in a single space variable, in: Lecture Notes in Mathematics, vol. 385, Springer-

Verlag, New York, 1974.
[10] B. Bialecki, G. Fairweather, Orthogonal spline collocation methods for partial differential equations, J. Comput. Appl. Math. 128 (2001) 55–82.
[11] B.K. Li, G. Fairweather, B. Bialecki, Discrete-time orthogonal spline collocation methods for Schrödinger equations in two space variables, SIAM J.

Numer. Anal. 35 (2) (1998) 453–477.
[12] M.P. Robinson, G. Fairweather, Orthogonal spline collocation methods for Schrödinger-type equations in one space variable, Numer. Math. 68 (1994)

355–376.
[13] M.P. Robinson, The solution of nonlinear Schrödinger equations using orthogonal spline collocation, Comput. Math. Appl. 33 (7) (1997) 39–57.
[14] S.S. Wang, L.M. Zhang, A class of conservative orthogonal spline collocation schemes for solving coupled Klein–Gordon–Schrödinger equations, Appl.

Math. Comput. 203 (2008) 799–812.
[15] R.I. Fernandes, Efficient orthogonal spline collocation methods for solving linear second order hyperbolic problems on rectangles, Numer. Math. 77

(1997) 223–241.
[16] C.E. Greenwell-Yanik, G. Fairweather, Analyses of spline collocation methods for parabolic and hyperbolic problems in two space variables, SIAM J.

Numer. Anal. 23 (2) (1986) 282–296.
[17] J.H. Cerutti, S.V. Parter, Collocation methods for parabolic differential equations in one space variable, Numer. Math. 26 (1976) 227–254.
[18] L. Zhang, Convergence of a conservative difference scheme for a class of Klein–Gordon–Schrödinger equations in one space dimension, Appl. Math.

Comput. 163 (2005) 343–355.
[19] B.Y. Guo, P.J. Pascual, M.J. Rodriguez, L. Vázquez, Numerical solution of the sine-Gordon equation, Appl. Math. Comput. 18 (1986) 1–14.
[20] F. Zhang, L. Vázquez, Two energy conserving numerical schemes for the sine-Gordon equation, Appl. Math. Comput. 45 (1991) 17–30.
[21] J.M. Varah, Alternate row and column elimination for solving certain linear systems, SIAM J. Numer. Anal. 13 (1) (1976) 71–75.
[22] J.C. Diaz, G. Fairweather, P. Keast, FORTRAN packages for solving certain almost block diagonal linear systems by modified alternate row and column

elimination, ACM Trans. Math. Software 9 (3) (1983) 358–375.
[23] J.C. Diaz, G. Fairweather, P. Keast, Algorithm 603 COLROW and ARCECO: FORTRAN packages for solving certain almost block diagonal linear systems

by modified alternate row and column elimination, ACM Trans. Math. Software 9 (3) (1983) 376–380.


	Discrete-time orthogonal spline collocation methods for the nonlinear Schrödinger equation with wave operator
	Introduction
	Preliminaries
	Discrete-time OSC scheme and conservative property
	Convergence and stability
	Another scheme
	Numerical experiments
	Convergence
	Stability
	Long-term computation

	Conclusion
	References


