
Numer Algor (2014) 65:633–650
DOI 10.1007/s11075-014-9825-0

ORIGINAL PAPER

Efficient implementation of Gauss collocation
and Hamiltonian boundary value methods

Luigi Brugnano ·Gianluca Frasca Caccia ·
Felice Iavernaro

Received: 3 April 2013 / Accepted: 3 January 2014 / Published online: 17 January 2014
© Springer Science+Business Media New York 2014

Abstract In this paper we define an efficient implementation for the family of low-
rank energy-conserving Runge-Kutta methods named Hamiltonian Boundary Value
Methods (HBVMs), recently defined in the last years. The proposed implementation
relies on the particular structure of the Butcher matrix defining such methods, for
which we can derive an efficient splitting procedure. The very same procedure turns
out to be automatically suited for the efficient implementation of Gauss-Legendre
collocation methods, since these methods are a special instance of HBVMs. The
linear convergence analysis of the splitting procedure exhibits excellent properties,
which are confirmed by a few numerical tests.

Keywords Energy-conserving methods · Hamiltonian Boundary Value Methods ·
W-transformation · Gauss-Legendre collocation methods · Implicit Runge-Kutta
methods · Splitting

Mathematics Subject Classifications (2010) 65P10 · 65L05 · 65L06 · 65L99

Warmly dedicated to celebrate the 80th birthday of John Butcher

L. Brugnano (�) · G. Frasca Caccia
Dipartimento di Matematica e Informatica “U. Dini”, Università di Firenze, Viale Morgagni, 67/A,
50134 Firenze, Italy
e-mail: luigi.brugnano@unifi.it

G. Frasca Caccia
e-mail: frasca@math.unifi.it

F. Iavernaro
Dipartimento di Matematica, Università di Bari, Via Orabona, 4, 70125 Bari, Italy
e-mail: felice.iavernaro@uniba.it

mailto:luigi.brugnano@unifi.it
mailto:frasca@math.unifi.it
mailto:felice.iavernaro@uniba.it

634 Numer Algor (2014) 65:633–650

1 Introduction

The efficient numerical solution of implicit Runge-Kutta methods has been the sub-
ject of many investigations in the last decades, starting from the seminal papers of
Butcher [15, 16] (see also [17]). This aspect is even more relevant when dealing with
geometric Runge-Kutta methods, that is, methods used in the framework of Geo-
metric Integration where, usually, the discrete problems generated by the methods
need to be solved to within full machine accuracy, in order not to waste the specific
properties of the methods.

In more details, in this paper we shall deal with the numerical solution of
Hamiltonian problems, namely problems in the form,

y ′ = J∇H(y), y(t0) = y0 ∈ R
2m, (1)

where

y =
(
q

p

)
, q, p ∈ R

m, J =
(

O Im
−Im O

)
, (2)

H(y) is the (scalar) Hamiltonian function defining the problem, and Im the identity
matrix of dimension m.1 Due to the skew-symmetry of matrix J one has

d

dt
H(y(t)) = ∇H(y(t))T y ′(t) = ∇H(y(t))T J∇H(y(t)) = 0,

so that
H(y(t)) = H(y0), ∀ t ≥ t0.

For isolated mechanical systems, the Hamiltonian has the physical meaning of the
total energy of the system, so that often the Hamiltonian is referred to as the energy.
Its conservation is, therefore, a significant feature for the discrete dynamical sys-
tem induced by a numerical method for solving (1): methods having this property
are usually called energy-conserving methods. Among such methods, we are inter-
ested in the class of energy-conserving methods named Hamiltonian Boundary Value
Methods (HBVMs) [5, 8] (see also [6, 7], and [3, 9] for generalizations), which have
been recently devised starting from the concept of discrete line integrals, defined in
[26–28]. For such methods, the discrete problem can be conveniently posed in a suit-
able form which can be exploited to derive efficient implementation strategies, as
was done in [6]. Here we further improve on such results, by proposing and analysing
an iterative procedure based on the particular structure of the discrete problem. As
a by-product, an efficient implementation of Gauss-Legendre collocation methods is
also obtained. Indeed, these latter methods may be interpreted as a particular instance
of HBVMs. The proposed procedure is strictly related to that recently devised in
[4] for Radau IIA collocation formulae, though the two approaches are substantially
different.

With this premise, the paper is organized as follows: in Section 2 we describe the
structure of the discrete problem generated by HBVMs, along with the way of solving
it, as done so far; in Section 3 we introduce the new iterative procedure, which is
based on a suitable splitting; in Section 4 we study the convergence properties of

1In the following, when the size of the identity is not specified, it can be deduced from the context.

Numer Algor (2014) 65:633–650 635

the new iteration, also comparing it with known existing ones; in Section 5 a few
numerical tests are reported; at last, a few conclusions are contained in Section 6.

2 Discrete problem induced by HBVMs

We now recall the basic facts about HBVMs, and derive the most efficient formula-
tion of the generated discrete problems. Let us assume, for sake of brevity, t0 = 0
in (1), and consider the approximation of the problem over the interval [0, h], which
will clearly concern the very first application of a given numerical method. Let us
then consider the orthonormal polynomial basis, on the interval [0, 1], provided by
the shifted and scaled Legendre polynomials {Pj }:

degPi = i,

∫ 1

0
Pi(x)Pj(x)dx = δij , ∀ i, j ≥ 0, (3)

where δij is the usual Kronecker symbol. Under suitable mild assumptions on the
Hamiltonian function H , the right-hand side of the differential equation (1) can be
expanded along the considered basis, thus giving

y ′(ch) =
∑
j≥0

γj (y)Pj (c), c ∈ [0, 1], (4)

where

γj (y) =
∫ 1

0
J∇H(y(τh))Pj (τ)dτ, j ≥ 0. (5)

By imposing the initial condition, the solution of this problem is formally obtained
by

y(ch) = y0 + h
∑
j≥0

γj (y)

∫ c

0
Pj (x)dx, c ∈ [0, 1]. (6)

In order to derive a polynomial approximation σ of degree s to (6), we consider the
following approximated ODE-IVPs:

σ ′(ch) =
s−1∑
j=0

γj (σ)Pj (c), c ∈ [0, 1], σ (0) = y0, (7)

where γj (σ) is defined according to (5), by formally replacing y by σ . Consequently,
the approximation to (6) will be given by

σ(ch) = y0 + h

s−1∑
j=0

γj (σ)

∫ c

0
Pj (x)dx, c ∈ [0, 1]. (8)

For sake of simplicity, assume now that the Hamiltonian function is a polynomial of
degree ν (for the general case, see Theorem 1 below). Consequently, the (unknown)
vector coefficients {γj (σ)} can be exactly obtained by using a quadrature formula
defined at the Gaussian abscissae {c1, . . . , ck}, i.e.,

Pk(ci) = 0, i = 1, . . . , k, (9)

636 Numer Algor (2014) 65:633–650

and corresponding weights {b1, . . . , bk},2

γj (σ) =
k∑

i=1

biJ∇H(σ(cih))Pj (ci), j = 0, . . . , s − 1, (10)

provided that

ν ≤ 2k

s
. (11)

By setting

Yi = σ(cih), i = 1, . . . , k, (12)

and considering that the new approximation is given by

y1 ≡ σ(h) = y0 + h

∫ 1

0
J∇H(σ(τh))dτ = y0 + h

k∑
i=1

biJ∇H(Yi),

one then obtains the following k-stage Runge-Kutta method,

c A

bT
(13)

where, as usual, b, c ∈ R
k are the vectors containing the weights and the abscissae,

respectively, and (see, e.g. [6–8])

A = Ps+1X̂sPT
s � ∈ R

k×k, (14)

with

Pr =
⎛
⎜⎝
P0(c1) . . . Pr−1(c1)

...
...

P0(ck) . . . Pr−1(ck)

⎞
⎟⎠ ∈ R

k×r , r = s, s + 1, (15)

X̂s =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2 −ξ1

ξ1 0
. . .

. . .
. . . −ξs−1
ξs−1 0

ξs

⎞
⎟⎟⎟⎟⎟⎟⎠

≡
(

Xs

0 . . . 0 ξs

)
∈ R

s+1×s, (16)

ξi =
(

2
√

4i2 − 1
)−1

, i = 1, . . . , s, (17)

� = diag(b) ∈ R
k×k. (18)

We observe that, when k = s, (14) becomes the W -transformation [21, pag. 79] of
the s-stage Gauss-Legendre Runge-Kutta method. Consequently, (14) can be also
regarded as a generalization of the W -transformation.

2Hereafter, we shall always assume this choice.

Numer Algor (2014) 65:633–650 637

Clearly, the Runge-Kutta method (13)–(18) makes sense also for general non-
polynomial Hamiltonians. Consequently, according to [5], we give the following
definition.

Definition 1 The Runge-Kutta method (13)–(18) is called HBVM(k, s).

The following properties [5, 8] elucidate the role of two indices k (number of
ascissae) and s (degree of the underlying polynomial σ) in the previous definition.

Theorem 1 For all k ≥ s, a HBVM(k, s) method:

• has order 2s, that is:
y1 − y(h) = O(h2s+1);

• is energy conserving for all polynomial Hamiltonians of degree ν satisfying (11);
• for general non-polynomial (but suitably regular) Hamiltonians, one has:

H(y1)−H(y0) = O(h2k+1). (19)

Remark 1 From (19) one deduces that a HBVM(k, s) method is practically energy-
conserving also in the case of non-polynomial Hamiltonians, provided that k is large
enough. Indeed, on a computer, it is enough to approximate the involved integrals to
within round-off errors.

Remark 2 Though the method (13)–(18) has been derived in the context of
Hamiltonian systems, we stress that it makes sense also when replacing problem (1)
by a generic (i.e., non Hamiltonian) initial value problem in the form y ′ = f (t, y)

[8].

For sake of completeness, and for later reference, we also report the follow-
ing result, which actually shows that HBVM(k, s) methods, with the choice (9) of
the abscissae, can be regarded as a generalization of the s-stage Gauss-Legendre
collocation formulae [5].

Theorem 2 HBVM(s, s) coincides with the s-stage Gauss-Legendre collocation
method.

If we set y the (block) vector with the internal stages (12) and e = (1, . . . , 1)T ∈
R
k , the discrete problem generated by a HBVM(k, s) method is given by

y = e⊗ y0 + hA⊗ J ∇H(y), (20)

which is a nonlinear system of (block) dimension k.3 However, in view of (19), k is
likely to be much larger than s and, consequently, such a formulation is in general
not recommendable.

3Here ∇H(y) is the block vector whose entries are given by the gradient of H evaluated at the k stages.

638 Numer Algor (2014) 65:633–650

To derive a more efficient formulation, let us set γ the (block) vector containing
the coefficients defining the polynomial σ in (8), thus obtaining:

γ = PT
s �⊗ J ∇H(y), y = e⊗ y0 + hPs+1X̂s ⊗ I γ.

Combined together, such equations provide us with the following discrete problem,

F(γ) ≡ γ − PT
s �⊗ J ∇H

(
e⊗ y0 + hPs+1X̂s ⊗ I γ

)
= 0, (21)

whose (block) size is always s, independently of k. In general, quite inexpensive
iterations (e.g., the fixed-point iteration) could be used for solving (21). Nevertheless,
in case, e.g., of stiff oscillatory problems, this could not be practical, since a very
small stepsize h would be required: in such a case, a Newton-type iteration is more
appropriate (see the second test problem in Section 5). As a popular example, one
easily checks that the simplified Newton iteration, applied for solving (21), consists
in the following iteration [6]:

solve :
[
I − hXs ⊗ J∇2H0

]
	
 = −F(γ
) (22)

γ
+1 = γ
 +	
,
 = 0, 1, . . . ,

where ∇2H0 is the Hessian of H(y) evaluated at y0. Consequently, the bulk of the
computational cost is due to the factorization of the matrix

M0 = I − hXs ⊗ J∇2H0,

having dimension 2sm × 2sm. In the next section, we shall see how to efficiently
solve the iteration (22).

Remark 3 As is clear from the previous arguments, HBVM(k, s) methods, with a
suitable choice of k, is (at least practically) energy-conserving, whereas HBVM(s, s)

(i.e., the symplectic s-stage Gauss method) in general is not. Consequently, by tak-
ing into account that the (block) dimension of the discrete problem generated by a
HBVM(k, s) method is always s independently of k, this method is preferable to the
s-stage Gauss method when an accurate conservation of the energy is required.

3 The new splitting procedure

The iteration (22) is similar in structure to the simplified-Newton iteration applied
to the original system (20), for which a number of splitting procedures have been
devised: as an example, triangular splittings are defined in [1, 4, 24, 25]; a diagonal
splitting, derived from the so called blended implementation of the methods, is stud-
ied in [10, 11]; additional approaches are described, e.g., in [2, 18, 19, 22, 23, 30];
moreover, we mention that a comprehensive linear analysis of convergence for such
iterations (generalizing that at first proposed in [24]) is reported in [13]. However,
the triangular splitting iteration defined in [24, 25], along with the modified trian-
gular splitting iteration defined in [1], turn out to be not effective for (22), due to
the particular structure of the matrix Xs (see (16)). Conversely, the blended iteration
defined in [10, 11] (see also [13]), turns out more appropriate, as is shown in [6].

Numer Algor (2014) 65:633–650 639

We here shall devise a different iterative procedure, which appears to be even more
favourable. This is the subject of the remaining part of this section. The main idea is
similar to that explained in [4] for Radau IIA collocation methods, even though the
framework and the overall details (and results) are definitely different: i.e., to replace
the set of s (block) unknowns, given by entries of the (block) vector γ defined in
(21), with a more convenient one. To begin with, let us consider the polynomial (7)
and introduce the new set of (block) unknowns,

γ̂i ≡
s−1∑
j=0

Pj (ĉi)γj (σ), i = 1, . . . , s, (23)

defined as the evaluation of (7) at the set of distinct auxiliary abscissae

ĉ1 , . . . , ĉs . (24)

Introducing the (block) vector

γ̂ =
⎛
⎜⎝
γ̂1
...

γ̂s

⎞
⎟⎠ , (25)

and the matrix
P̂ = (

Pj−1(ĉi)
) ∈ R

s×s, (26)

we can recast (23) in vector form as

γ̂ = P̂ ⊗ I γ. (27)

In terms of the new unknown vector γ̂ , the simplified Newton iteration (22) reads:

solve : M̂0	̂

 = −P̂ ⊗ I F (P̂−1 ⊗ I γ̂
) ≡ η
, (28)

γ̂
+1 = γ̂
 + 	̂
,
 = 0, 1, . . . ,

where
M̂0 = I − h

(
P̂XsP̂−1

)
⊗ J∇2H0 ≡ I − hÂ⊗ J∇2H0. (29)

Remark 4 We stress that matrix Â = P̂XsP̂−1 is independent of k: it only depends
on s, whichever is the considered value of k ≥ s. Consequently, the approach
presented below also applies to the case k = s, that is, to the s-stages Gauss method.

The key idea is that of choosing the abscissae (24) such that Â can be factored as

Â = L̂Û , (30)

with Û upper triangular with unit diagonal entries, and L̂ lower triangular with con-
stant diagonal entries. In such a case, by following the approach of van der Houwen
et al. [24, 25], the iteration (28) is replaced by the inner-outer iteration

solve :
[
I − hL̂⊗ J∇2H0

]
	̂
,r+1 = hL̂(Û − I)⊗ J∇2H0 	̂

,r + η
,

r = 0, 1, . . . , μ− 1, (31)

γ̂
+1 = γ̂
 + 	̂
,μ,
 = 0, 1,

640 Numer Algor (2014) 65:633–650

In particular, since 	̂
,0 = 0, the choice μ = 1 corresponds to the approach used
by van der Houwen et al. to devise PTIRK methods [24], whereas, if μ is large
enough to have full convergence of the inner-iteration (the one on r), then the outer
iteration is equivalent to (28). Clearly, all the intermediate possibilities can be suitably
considered.

After the convergence of (31), the new approximation is computed (see (8)) as

y1 = y0 + hγ0,

where γ0 (i.e., the first block entry of the vector γ), is retrieved from (27). We observe
that the diagonal entries of the factor L̂ are all equal to a given value, say ds , which
has the obvious advantage that one only needs to factor the matrix

I − hdsJ∇2H0 ∈ R
2m×2m. (32)

Remark 5 In an actual computational code, such a matrix can be kept constant over
a number of steps, being factored only when the Hessian needs to be revaluated
and/or the stepsize is modified. In this paper, we deliberately ignore this issue, which
requires a further analysis (see, e.g., [12] for the code described in [11]). Conse-
quently, in the numerical tests we shall use a constant stepsize and compute the
Hessian at each step.

Concerning ds , the following result holds true.

Theorem 3 Assume that the factorization (30) is defined and that the factor L̂ has
all its diagonal entries equal to ds . Then, with reference to (17), one has:

ds =
⎧⎨
⎩

s

√∏
 s2 �
i=1 ξ

2
2i−1 , if s is even,

s

√
1
2

∏
 s
2 �

i=1 ξ
2
2i , if s is odd.

(33)

Proof Assume that (29)–(30) hold true. Then

det(Xs) = det(P̂XsP̂−1) = det(Â) = det(L̂Û) = det(L̂) = dss ,

since Û has unit diagonal and all the entries of L̂ are equal to ds . Consequently,

ds = s
√

det(Xs).

The thesis then follows by considering that, from (16),

det(X1) = 1

2
, det(X2) = ξ2

1 ,

and, by applying the Laplace expansion, one obtains:

det(Xs) =
⎧⎨
⎩

∏
 s2 �
i=1 ξ

2
2i−1 , if s is even,

1
2

∏
 s2 �
i=1 ξ

2
2i , if s is odd.

(34)

Numer Algor (2014) 65:633–650 641

By virtue of the previous result, in order to compute the auxiliary abscissae (24),
we have symbolically solved the following set of equations, which is obviously
equivalent to requiring that the factor L̂ has the diagonal entries equal to each other:

det(Â
+1) = ds det(Â
),
 = 1, . . . , s − 1, (35)

where Â
 denotes the principal leading submatrix of order
 of Â, and ds is given by
(33).

Remark 6 We observe that the auxiliary abscissae (24) are s, whereas the algebraic
conditions (35) are s − 1. This means that a further condition can be imposed on the
abscissae: we have chosen it in order to improve the convergence properties of the
iteration (31), according to the linear analysis of convergence reported in Section 4;
in particular, we shall (approximately) minimize the maximum amplification factor
of the iteration, as it will be later explained.

The obtained results are listed in Table 1, for s = 2, . . . , 6, from which one sees
that in all cases the abscissae are distinct and inside the interval [0, 1].

We emphasize that, for any given s, the distribution of the auxiliary abscissae (24)
is independent of k and so is the factorization (30) of the matrix Â whose compu-
tation is responsible of the bulk of the computational effort during the integration
process. This property has a relevant consequence during the implementation phase
of this class of methods. In fact, one can conjecture a procedure to advance the time
that dynamically selects the most appropriate value of k. Depending on the specific
problem at hand and the configuration of the system at the given time, one can easily
switch from a symplectic to an energy preserving method by choosing k = s (Gauss
method) or k > s, respectively.

4 Convergence analysis and comparisons

In this section we briefly analyze the splitting procedure (31). In general, its con-
vergence properties could be discussed in the framework of quasi-Newton methods,
leading to the (quite) obvious result that linear convergence is obtained for suffi-
ciently small h, provided that H is suitably regular. Nevertheless, a more suited
approach, which has proved to be very effective in the actual design of efficient
variable-order/variable-stepsize codes for ODE-IVPs (see, e.g., [11]), is based on the
linear analysis of convergence in [24] (further developed in [13]). Such an analysis is
well motivated from the fact that the inner iteration in (31) amounts to solving a linear
system. This latter system can be thought of being obtained by applying the orig-
inal numerical method to the local (frozen) linearized problem. As a consequence,
one can decompose it in the subspaces spanned by the eigenvalues of the Jacobian.
Equivalently, one can directly consider the scalar problem defined by each eigen-
value. Consequently, one is led to study the behavior of the method when applied to
the celebrated test equation:

y ′ = λy, y(t0) = y0. (36)

642 Numer Algor (2014) 65:633–650

Table 1 Auxiliary abscissae
(24) for the HBVM(k, s)

and s-stage Gauss method,
s = 2, . . . , 6, and the diagonal
entry ds (see (33)) of the
corresponding factor L̂

s = 2

ĉ1 0.26036297108184508789101036587842555

ĉ2 1

d2 0.28867513459481288225457439025097873

s = 3

ĉ1 0.15636399930006671060146617869938122

ĉ2 0.45431868644630821020177903150137523

ĉ3 0.948

d3 0.20274006651911333949661483325792675

s = 4

ĉ1 0.11004843257056123468614502691988075

ĉ2 0.31588689139705398683980065724981436

ĉ3 0.53114668286639796587351917750274705

ĉ4 0.884

d4 0.15619699684601279005430416526875577

s = 5

ĉ1 0.084221784434612320884185541600934218

ĉ2 0.248618520588562018051811779022293944

ĉ3 0.413725268815220956415498643302145284

ĉ4 0.587098748971877116030882436751962384

ĉ5 0.9338

d5 0.12702337351164258963093490787943281

s = 6

ĉ1 0.20985774196263657630356114041757724

ĉ2 0.36816786358152563671526302698797908

ĉ3 0.39607328223635472401921951140390213

ĉ4 0.62783521091780460858476326939502046

ĉ5 0.04580307227138364391540767310611717

ĉ6 0.94225

d6 0.10702845478806509529222890981996019

Clearly, one directly arrives to the same conclusion in case problem (1) is separable,
with a quadratic Hamiltonian, with the eigenvalues lying on the imaginary axis. Since
problem (36) is linear, the iteration (31) consists in solving the inner iteration alone,
so that we can skip the index
 of the outer iteration. By setting, as is usual, q = hλ,
one then obtains that the error equation associated with the iteration (31) is given by

er+1 = Z(q)er, Z(q) := q(I − qL̂)−1L̂(Û − I), r = 0, 1, . . . , (37)

where er is the error vector at step r and Z(q) is the iteration matrix induced by the
splitting procedure. This latter will converge if and only if its spectral radius,

ρ(q) := ρ(Z(q)),

Numer Algor (2014) 65:633–650 643

is less than 1. The region of convergence of the iteration is then defined as

D = {q ∈ C : ρ(q) < 1} .
The iteration is said to be A-convergent if C

− ⊆ D. If, in addition, the stiff
amplification factor,

ρ∞ := lim
q→∞ρ(q),

is null, then the iteration is said to be L-convergent. 4 In our case, since

Z(q) → (Û − I), q → ∞, (38)

which is a nilpotent matrix of index s, the iteration is L-convergent if and only if it is
A-convergent. Since the iteration is well defined for all q ∈ C

− (due to the fact that
the diagonal entry of L̂, ds , is positive, as was shown in (33)) and ρ(0) = 0, from the
maximum-modulus theorem it follows immediately that A-convergence is, in turn,
equivalent to require that the maximum amplification factor,

ρ∗ := max
x∈R

ρ(ix),

is not larger than 1. Another useful parameter is the nonstiff amplification factor,

ρ̃ := ρ(L̂(Û − I)), (39)

that governs the convergence of the iteration for small values of q , since

ρ(q) ≈ ρ̃|q|, for q ≈ 0.

Clearly, the smaller ρ∗ and ρ̃, the better the convergence properties of the iteration.
With these premises, we can now better specify what anticipated in Remark 6, con-

cerning the additional condition imposed to derive the auxiliary abscissae (24), while
fulfilling the conditions (35). In more details, the abscissae listed in Table 1 have
been computed by (approximately) solving the following constrained minimization
problem:

min
ĉ1,...,ĉs

ρ∗

s.t. det(Â
+1) = ds det(Â
),
 = 1, . . . , s − 1.

Clearly, this has been made possible by the introduction of the transformation (27).
In Table 2 we list the maximum amplification factors and the nonstiff ampli-

fication factors for the following L-convergent iterations applied to the s-stage
Gauss-Legendre methods:

(i) the iteration obtained by the original triangular splitting in [24];
(ii) the iteration obtained by the modified triangular splitting in [1];

(iii) the blended iteration obtained by the blended implementation of the methods,
as defined in [10];

(iv) the iteration defined by (31).

4In general, A-convergent iterations are appropriate for A-stable methods, and L-convergent iterations are
appropriate for L-stable methods.

644 Numer Algor (2014) 65:633–650

Table 2 Amplification factors for the triangular splitting in [24], the modified triangular splitting in [1],
the blended iteration in [6], and the splitting (31), for the s-stage Gauss-Legendre formulae

(i): triangular (ii): triangular (iii): blended (iv): triangular

splitting in [24] splitting in [1] iteration in [6] splitting (31)

s ρ∗ ρ̃ ρ∗ ρ̃ ρ∗ ρ̃ ρ∗ ρ̃

2 0.1429 0.0833 0.1340 0.0774 0.1340 0.0774 0.1340 0.0774

3 0.3032 0.1098 0.2537 0.0856 0.2765 0.1088 0.2536 0.0870

4 0.4351 0.1126 0.3492 0.0803 0.3793 0.1119 0.3291 0.0859

5 0.5457 0.1058 0.4223 0.0730 0.4544 0.1066 0.3709 0.0654

6 0.6432 0.0973 0.4861 0.0702 0.5114 0.0993 0.4353 0.0650

The last two cases coincide with those for the HBVM(k, s) methods, k ≥ s

We recall that the scheme (i) (first column) requires s real factorizations per iteration,
whereas (ii)–(iv) only need one factorization per iteration. From the parameters listed
in the table, one concludes that the proposed splitting procedure is the most effective
among all the considered ones.

Remark 7 For sake of accuracy, we stress that, when dealing with the actual imple-
mentation of HBVM(k, s) methods, only the blended iteration [6] and the newly
proposed one (31) can be considered, whereas the triangular splitting defined in [24]
and its modified version [1] turn out to be not effective, as was pointed out at the
beginning of Section 3. Consequently, in such a case, one has to consider only the
last two group of columns in Table 2.

4.1 Averaged amplification factors

The previous amplification factors measure the asymptotic speed of convergence
when an infinite number of iterations are performed, which is not the case, in the
actual implementation of the methods. For this purpose (see, e.g., [13]) it is also
customary to define corresponding averaged amplification factors, which measure
the “average” convergence when a prescribed number of iterations is performed. In
particular, by considering a suitable matrix norm ‖ · ‖, and with reference to what
previously has been set out, we define the following averaged amplification factors
when μ iterations of (37) are carried out:

ρ∗
μ := sup

x∈R
μ
√‖Z(ix)μ‖, ρ̃μ := μ

√∥∥∥[
L̂(Û − I)

]μ∥∥∥, ρ∞
μ := μ

√
‖(Û − I)μ‖.

(40)
Clearly,

lim
μ→∞ ρ∗

μ = ρ∗, lim
μ→∞ ρ̃μ = ρ̃,

Numer Algor (2014) 65:633–650 645

Table 3 Averaged amplification factors (40) for the splitting (31), used for the HBVM(k, s) methods,
k ≥ s, when performing μ = 1, 2, 3 iterations

s ρ∗1 ρ̃1 ρ∞
1 ρ∗

2 ρ̃2 ρ∞
2 ρ∗3 ρ̃3 ρ∞

3

2 0.1340 0.0774 0.0981 0.1340 0.0774 0 0.1340 0.0774 0

3 0.4492 0.0874 0.2606 0.3423 0.0873 0.1091 0.3087 0.0872 0

4 0.4751 0.1459 0.4751 0.4098 0.1200 0.1757 0.3848 0.1091 0.1294

5 0.8625 0.2045 0.7471 0.6775 0.1385 0.2872 0.5874 0.1154 0.1747

6 3.0797 0.2747 1.4988 1.2780 0.1356 0.4929 0.9451 0.1121 0.2697

and
ρ∞
μ = 0, ∀μ ≥ s.

In Table 3 we list the obtained averaged amplification factors (40) when performing
μ = 1, 2, 3 iterations, by considering the infinity norm. As one may see, the resulting
iteration turns out to be A-convergent also when using just one inner iteration, unless
the case s = 6, which requires at least 3 inner iterations.

Remark 8 When performing only μ inner-iterations for solving the discrete problem
generated by (36), we have to consider also the outer iteration, even though the prob-
lem is linear. In such a case, by setting E
 the error at the
-th outer iteration, it is
quite straightforward to see that the error equation for the outer iteration is given by
(compare with (31)):

E
+1 = Z(q)μE
,
 = 0, 1,

Consequently, the previous convergence analysis also applies to the present case.

5 Numerical Tests

In this section, we report a couple of numerical examples, aimed to put into evi-
dence the features of the methods, and/or the effectiveness of the proposed iterative

Table 4 Results when solving Problem (41)–(42) by using the HBVM(k, 2) method with stepsize h = 0.1
over the interval [0, 103]

k Hamiltonian solution fixed-point blended splitting

error error iterations iterations iterations

2 1.6 · 10−3 9.97 · 10−2 79511 66854 48030

4 8.3 · 10−6 1.82 · 10−2 79846 66884 48252

6 5.9 · 10−9 1.81 · 10−2 79911 66941 48349

8 1.7 · 10−12 1.81 · 10−2 79939 66963 48377

10 4.4 · 10−16 1.81 · 10−2 79962 66976 48402

646 Numer Algor (2014) 65:633–650

Table 5 Fixed-point iterations
for solving problem (43)–(45),
on the interval [0,10], by using
HBVM(6,3) with stepsize h

h Fixed-point iterations

10−4 2278912

2 · 10−4 1904534

4 · 10−4 4540389

5 · 10−4 ***(*** means that the iteration
doesn’t converge)

procedure. For both problems, we list the computational cost for HBVM(k, s) meth-
ods, in terms of required iterations for solving the generated discrete problems with
a constant stepsize, when using:

• the fixed-point iteration;
• the blended iteration in [6];
• the splitting iteration (31) with 2 inner iterations.

The choice of 2 inner iterations in (31) makes the cost of one outer iteration compa-
rable to that of one blended iteration, provided that (31) is implemented as suggested
in [4]. The total number of functional evaluations equals the number of iterations
times k. Moreover, for the latter two iterations, at each step one also needs to evalu-
ate the Hessian ∇2H , as well as to factor a matrix having the same size as that of the
continuous problem (i.e., (32), in the case of the iteration (31)).

The first problem is a nonlinear Hamiltonian problem describing the motion of
a charged particle, with charge e and mass m, in a magnetic field with Biot-Savart
potential. It is defined by the Hamiltonian:

H(x, y, z, x ′, y ′, z′) = 1

2m

[(
x ′ − α

x

ρ2

)2

+
(
y ′ − α

y

ρ2

)2

+ (
z′ + α logρ

)2

]
,

(41)
with ρ = √

x2 + y2 and α = eB0, B0 being the intensity of the magnetic field. We
have used the values

m = 1, e = −1, B0 = 1,

and the initial values

x = 0.5, y = 10, x ′ = −0.1, y ′ = −0.3, z = z′ = 0. (42)

Table 6 Hamiltonian error,
obtained by using a sixth-order
explicit composition method
based on the Störmer-Verlet
method, for solving problem
(43)–(45) on the interval [0,10]
by using stepsize h

h Hamiltonian error

10−5 9.2 · 10−8

5 · 10−5 1.5 · 10−3

10−4 8.5 · 10−2

2 · 10−4 ***

4 · 10−4 ***

5 · 10−4 ***(*** means that the numerical
solution diverges)

Numer Algor (2014) 65:633–650 647

Table 7 Newton-type iterations
for solving problem (43)–(45),
on the interval [0,10], by using
HBVM(6,3) with stepsize h

h Blended iterations Splitting iterations

10−4 1634792 856691

5 · 10−4 599927 299586

10−3 241468 141506

5 · 10−3 29051 19148

10−2 12721 8955

5 · 10−2 2369 1556

10−1 1400 864

5 · 10−1 440 258

In Table 4 we list the results obtained by applying the HBVM(k, 2) methods, k =
2, 4, 6, 8, 10, for solving this problem over the interval [0, 103] with stepsize h = 0.1.
From the results in the table, one infers that:

• the Hamiltonian error monotonically decreases as k is increased and, for k = 10,
one obtains a practical conservation, for the given stepsize (consequently, larger
values of k would be useless);

• the solution error when using the symplectic 2-stages Gauss method (i.e.,
HBVM(2,2)) is larger than that obtained when the energy error decreases;

• the proposed iterative procedure (31) is more effective than the blended iteration
proposed in [6]. In such a case, however, both iterations turn out to be not very
competitive, with respect to the use of a fixed-point iteration, since this problem
is not stiff;

• all iterations provide a total cost which is independent of k.

The second test problem that we consider is, on the contrary, a stiff oscillatory
problem. It is defined as a slight modification of the Fermi-Pasta-Ulam problem
described in [20].5 The Hamiltonian is now given by:

H(p, q) = 1

2

m∑
i=1

(
p2

2i−1 + p2
2i

)
+ 1

4

m∑
i=1

ω2
i (q2i − q2i−1)

2 +
m∑
i=0

(q2i+1 − q2i)
4 ,

(43)
with q, p ∈ R

2m and q0 = q2m+1 = 0. We choose m = 7, so that the problem has
dimension 28, and

ωi = ωm−i+1 = 10, i = 1, 2, 3, and ω4 = 104. (44)

The starting vector is

pi = 0, qi = i − 1

2m− 1
, i = 1, . . . , 2m. (45)

In such a case, the Hamiltonian function is a polynomial of degree 4, so that the
HBVM(2s, s) method (having order 2s), is able to exactly preserve the Hamiltonian.

5The original problem reported in [20] is obtained by setting m = 3 and ωi = 50, i = 1, . . . ,m, in (43).

648 Numer Algor (2014) 65:633–650

0 2 4 6 8 10
−0.5

0

0.5

1

t

q 1
1

Fig. 1 Numerical approximation obtained by using HBVM(6,3) with stepsizes h = 10−4 (continuous
line) and h = 0.5 (circles) for solving problem (43)–(45)

As an example, fix s = 3 and integrate the problem on the interval [0, 10]. In this
case, the fixed-point iteration cannot be expected to work, when using stepsizes much
larger than ‖ω‖−1∞ = 10−4, as is confirmed by the results listed in Table 5. Similarly,
explicit methods, which exist in this specific case since the problem is separable (see
[29, Chapter 8]), suffer from similar restrictions on the stepsize because of stability
reasons. In particular, we consider a composition method, having order 6, based on
the second order Störmer-Verlet method (see [20, Chapter II.4] for details), requiring
18 function evaluations per step:6 the results listed in Table 6 clearly confirm this
fact.

Conversely, the use of Newton-type iterations for solving the discrete problems
generated by the HBVM(6,3) method, permits to use much larger stepsizes, thus
allowing to approximate the low frequencies without being hindered by the high ones.
By using the blended iteration defined in [6] and the iteration (31) previously defined,
one obtains the results listed in Table 7. Even when using very coarse stepsizes, the
approximation of the slowly-oscillating components of the solution (24 out of 28) is
satisfactory: as an example, in Figs. 1 and 2 there is the plot of the slowly-oscillating
components q11 and p11, respectively, by using a finer step, h = 10−4, and a much
coarser one, h = 0.5.7 Last but not least, from the figures in Table 7, one sees that

6Consequently, each step of this composition method has a cost which is comparable to 3 fixed-point
iterations for HBVM(6,3).
7By the way, we mention that also the amplitude of the remaining 4 highly-oscillating components turns
out to be well approximated, when using a stepsize h = 0.1.

Numer Algor (2014) 65:633–650 649

0 2 4 6 8 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t

p 1
1

Fig. 2 Numerical approximation obtained by using HBVM(6,3) with stepsizes h = 10−4 (continuous
line) and h = 0.5 (circles) for solving problem (43)–(45)

the new iterative procedure (31) is the most effective one, though using only 2 inner
iterations.

6 Conclusions

In this paper we have defined an efficient iterative procedure for solving the discrete
problems generated by the application of HBVM(k, s) methods, a class of energy-
conserving methods for polynomial Hamiltonian dynamical systems. The proposed
implementation turns out to improve over that proposed in [6]. Moreover, it also
applies to Gauss-Legendre formulae and the resulting linear convergence analysis
shows that the proposed iterative procedure is the most effective, among those based
on suitable splittings of the corresponding Butcher array of the methods, known
from the literature. A few numerical tests confirm the effectiveness of the proposed
iteration when numerically solving stiff oscillatory problems.

Acknowledgments The authors wish to thank the anonymous referees, for the useful comments and
remarks.

References

1. Amodio, P., Brugnano, L.: A note on the efficient implementation of implicit methods for ODEs. J.
Comput. Appl. Math. 87, 1–9 (1997)

650 Numer Algor (2014) 65:633–650

2. Bickart, T.A.: An efficient solution process for implicit Runge–Kutta methods. SIAM J. Numer. Anal.
14(6), 1022–1027 (1977)

3. Brugnano, L., Iavernaro, F.: Line integral methods which preserve all invariants of conservative
problems. J. Comput. Appl. Math. 236, 3905–3919 (2012)

4. Brugnano, L., Iavernaro, F., Magherini, C.: Efficient implementation of Radau collocation methods
(submitted for publication) (2012). arXiv:1302.1037

5. Brugnano, L., Iavernaro, F., Trigiante D.: Hamiltonian boundary value methods (Energy Preserving
Discrete Line Methods). JNAIAM J. Numer. Anal. Ind. Appl. Math. 5(1–2), 17–37 (2010)

6. Brugnano, L., Iavernaro, F., Trigiante, D.: A note on the efficient implementation of Hamiltonian
BVMs. J. Comput. Appl. Math. 236, 375–383 (2011)

7. Brugnano, L., Iavernaro, F., Trigiante, D.: The lack of continuity and the role of infinite and infinitesi-
mal in numerical methods for ODEs: the case of symplecticity. Appl. Math. Comput. 218, 8053–8063
(2012)

8. Brugnano, L., Iavernaro, F., Trigiante, D.: A simple framework for the derivation and analysis of
effective one-step methods for ODEs. Appl. Math. Comput. 218, 8475–8485 (2012)

9. Brugnano, L., Iavernaro, F., Trigiante, D.: Energy and quadratic invariants–preserving integrators
based upon Gauss collocation formulae. SIAM J. Numer. Anal. 50(6), 2897–2916 (2012)

10. Brugnano, L., Magherini, C.: Blended implementation of block implicit methods for ODEs. Appl.
Numer. Math. 42, 29–45 (2002)

11. Brugnano, L., Magherini, C.: The BiM code for the numerical solution of ODEs. J. Comput. Appl.
Math. 164–165, 145–158 (2004)

12. Brugnano, L., Magherini, C.: Some linear algebra issues concerning the implementation of blended
implicit methods. Numer. Lin. Alg. Appl. 12, 305–314 (2005)

13. Brugnano, L., Magherini, C.: Recent advances in linear analysis of convergence for splittings for
solving ODE problems. Appl. Numer. Math. 59, 542–557 (2009)

14. Burrage, K., Burrage, P.M.: Low-rank Runge-Kutta methods, symplecticity and stochastic
Hamiltonian problems with additive noise. J. Comput. Appl. Math. 236, 3920–3930 (2012)

15. Butcher, J.C.: On the implementation of implicit Runge-Kutta methods. BIT 16, 237–240 (1976)
16. Butcher, J.C.: A transformed implicit Runge-Kutta method. J. Assoc. Comput. Mach. 26, 237–240

(1979)
17. Cooper, G.J., Butcher, J.C.: An iteration scheme for implicit Runge-Kutta methods. IMA J. Numer.

Anal. 3, 127–140 (1983)
18. Cooper, G.J., Vignesvaran, R.: Some schemes for the implementation of implicit Runge-Kutta

methods. J. Comput. Appl. Math. 45, 213–225 (1993)
19. González-Pinto, S., González-Conceptión, S., Montijano, J.I.: Iterative schemes for Gauss methods.

Comput. Math. Appl. 27, 67–81 (1994)
20. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration, 2nd edn. Springer, Berlin (2006)
21. Hairer, E., Wanner, G.: Solving ordinary differential equations II. Stiff and differential-algebraic

problems, 2nd edn. Springer-Verlag, Berlin (1996)
22. van der Houwen, P.J., Messina, E.: Splitting methods for second-order initial value problems. Numer.

Algoritm. 18, 233–257 (1998)
23. van der Houwen, P.J., Sommeijer, B.P.: The use of approximate factorization in stiff ODE solvers. J.

Comput. Appl. Math. 100, 11–21 (1998)
24. van der Houwen, P.J., de Swart, J.J.B.: Triangularly implicit iteration methods for ODE-IVP solvers.

SIAM J. Sci. Comput. 18, 41–55 (1997)
25. van der Houwen, P.J., de Swart, J.J.B.: Parallel linear system solvers for Runge-Kutta methods. Adv.

Comput. Math. 7(1–2), 157–181 (1997)
26. Iavernaro, F., Pace, B.: s-stage trapezoidal methods for the conservation of Hamiltonian functions of

polynomial type. AIP Conf. Proc. 936, 603–606 (2007)
27. Iavernaro, F., Pace, B.: Conservative block-boundary value methods for the solution of polynomial

Hamiltonian systems. AIP Conf. Proc. 1048, 888–891 (2008)
28. Iavernaro, F., Trigiante, D.: High-order symmetric schemes for the energy conservation of polynomial

Hamiltonian problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 4(1–2), 87–101 (2009)
29. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian problems. Chapman & Hall, London (1994)
30. Schlenkrich, S., Walther, A., Griewank, A.: Application of AD-based quasi-Newton methods to stiff

ODEs. Lect. Notes Comput. Sci. Eng. 50, 89–98 (2006)

http://arxiv.org/abs/1302.1037

	Efficient implementation of Gauss collocation and Hamiltonian boundary value methods
	Abstract
	Introduction
	Discrete problem induced by HBVMs
	The new splitting procedure
	Convergence analysis and comparisons
	Averaged amplification factors

	Numerical Tests
	Conclusions
	Acknowledgments
	References

