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Abstract

Recently, a new family of integrators (Hamiltonian Boundary Value Meth-
ods) has been introduced, which is able to precisely conserve the energy
function of polynomial Hamiltonian systems and to provide apractical con-
servation of the energy in the non-polynomial case.

We settle the definition and the theory of such methods in a more general
framework. Our aim is on the one hand to give account of their good behav-
ior when applied to general Hamiltonian systems and, on the other hand,
to find out what are theoptimal formulae, in relation to the choice of the
polynomial basis and of the distribution of the nodes. Such analysis is based
upon the notion ofextended collocation conditionsand the definition ofdis-
crete line integral, and is carried out by looking at the limit of such family
of methods as the number of the so calledsilent stagestends to infinity.
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1 Introduction

We consider canonical Hamiltonian problems in the form

ẏ = J∇H(y), y(t0) = y0 ∈ R
2m, (1)

whereJ is a skew-symmetric constant matrix, and the HamiltonianH(y) is as-
sumed to be sufficiently differentiable. For its numerical integration, the problem
is to find numerical methods which preserveH(y) along the discrete solution
{yn}, since this property holds for the continuous solutiony(t).

So far, many attempts have been made inside the class of Runge-Kutta meth-
ods, the most successful of them being that of imposing the symplecticity of the
discrete map, considering that, for the continuous flow, symplecticity implies the
conservation ofH(y). Concerning symplectic integrators, a backward error anal-
ysis permits to prove that they exactly conserve a modified Hamiltonian, even
though this fact clearly does not always guarantee a proper qualitative behavior of
the discrete orbits.

On the other hand, it is possible to follow different approaches to derive geo-
metric integrators which are energy-preserving. This has been done, for example,
in the pioneering work [6], and later in [14], wherediscrete gradient methodsare
introduced and studied. An additional example of energy-preserving method is
the Averaged Vector Field (AVF)method defined in [15] (see also [4]). By the
way, the latter method can be retrieved by the methods here studied.

More recently, in [2] a new family of one-step methods has been introduced,
capable of providing a numerical solution{yn} of (1), along which the energy
functionH(y) is precisely conserved, in the case where this function is a polyno-
mial (see also [10, 11, 1]).

These methods, namedHamiltonian Boundary Value Methods(HBVMshere-
after), may be also thought of as Runge-Kutta methods where the internal stages
are split into two categories:

- the fundamental stages, whose number, says, is related to the order of the
method;

- thesilent stages, whose number, sayr, has to be suitably selected in order
to assure the energy conservation property for a polynomialH(y) of given
degreeν; the higher isν, the higher must ber.

The resulting method is denoted by HBVM(k, s),1 wherek = s + r is the total
number ofunknownstages.

1The denominationHBVMwith k stepsanddegrees was used in [2].
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In [2, 11] it has also been shown that these new methods provide a practical
conservation of the energy even in the non-polynomial case:the term “practical”
means that, in many general situations, when the number of silent stages is high
enough, the method makes no distinction between the functionH(y) and its poly-
nomial approximation, being the latter in a neighborhood ofsizeε of the former,
whereε denotes the machine precision.

Another relevant issue to be mentioned is that the computational cost for the
solution of the associated nonlinear system is essentiallyindependent of the num-
ber of silent stages, and only depends ons (see [2, 1]). This comes from the fact
that the silent stages are actually linear combinations of the fundamental stages.

These two aspects motivate the following question:what is, if any, the limit
method when the number of silent stages grows to infinity?

This question was first posed by Ernst Hairer,2 who also provided a partial
answer by stating formulae (21), which he calledEnergy Preserving variant of
Collocation Methods(EPCMs, hereafter) [7]. We provide a proof of his statement
by clarifying the connection between the limit formulae andHBVMs: we show
that actually one can define several different limit methods,3 each one associated
to the specific polynomial basis, as well as to the choice of the abscissae distribu-
tion, used to construct the sequence of HBVMs. For example, EPCMs are based
upon the use of Lagrange polynomials, while, working with the shifted Legendre
basis, yields to different limit methods, that we have called Infinity Hamiltonian
Boundary Value Methods(in short,∞-HBVMsor HBVM(∞, s), beings the num-
ber of theunknownfundamental stages).

Our aim in this paper is threefold:

1. We settle the definition of HBVMs in a more general framework, also de-
riving the general formulation of the limit formulae

lim
k→∞

HBVM(k, s).

In particular, we show that such limit coincides with EPCMs if the Lagrange
polynomial basis is used (Section 2).

2. In Section 3, we introduce the new class of∞-HBVMs, which are the limit
formulae corresponding to the HBVMs based upon the shifted Legendre
polynomial basis. We prove that the order of such formulae isthe same
as the Gauss-Legendre methods, that is2s (wheres is the number of the
unknown fundamental stages).

2During the international conference “ICNAAM 2009”, Rethymno, Crete, Greece, 18-22
September 2009, after the talks, by the first two authors, where HBVMs were presented.

3In the sense that they generate different discrete problems.
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3. We mention the case whereH(y) belongs to vector spaces different from
that of polynomials, thus providing a natural (and trivial)generalization of
the original formulae (see Section 4). Moreover, in the polynomial case, we
determine theoptimaldistribution of the nodes (Section 5).

We stress that any finite approximation of EPCMs or∞-HBVMs based on
quadratures leads back to HBVM(k,s) methods, fork high enough.

We address all the points listed above, by slightly modifying the approach
followed to define the class of HBVMs in [2].

2 Reformulation of Hamiltonian BVMs

The key formula which HBVMs rely on, is theline integraland the related prop-
erty of conservative vector fields:

H(y1)−H(y0) = h

∫ 1

0

σ̇(t0 + τh)T∇H(σ(t0 + τh))dτ, for anyy1 ∈ R
2m,

(2)
whereσ is any smooth function such that

σ(t0) = y0, σ(t0 + h) = y1. (3)

Here we consider the case whereσ(t) is a polynomial (of degree at mosts), yield-
ing an approximation to the true solutiony(t) in the time interval[t0, t0 + h]. The
numerical approximation for the subsequent time-step,y1, is then defined by (3).
After introducing a set ofs distinct abscissaec1, . . . , cs, (0 < ci ≤ 1),4 we set

Yi = σ(t0 + cih), i = 1, . . . , s, (4)

so thatσ(t) may be thought of as an interpolation polynomial,Yi, i = 1, . . . , s,
being the internal stages.

Let us consider the following expansions ofσ̇(t) andσ(t) for t ∈ [t0, t0 + h]:

σ̇(t0 + τh) =

s∑

j=1

γjPj(τ), σ(t0 + τh) = y0 + h

s∑

j=1

γj

∫ τ

0

Pj(x) dx, (5)

where{Pj(t)} is any suitable basis of the vector space of polynomials of degree
at mosts − 1 and the (vector) coefficients{γj} are to be determined.5 Before
proceeding, one important remark is in order.

4As a convention, whenc = 0 is to be considered, as in the case of the Lobatto abscissae in
[0, 1], thenc0 = 0 is formally added to the abscissaec1, . . . , cs, and the subsequent formulae are
modified accordingly.

5More general function spaces will be considered in the sequel.
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Remark 1. As will be clear in a while, we observe that the numerical method
which the following procedure will define is “basis-dependent”, in that to different
choices of the basis{Pj(t)} there will, in general, correspond different numerical
methods. In this section, in order to let the theory be presented as general as
possible, we leave the basis not better specified. This will allow us to achieve the
results listed at point 1. in the introduction. The questionabout how to choose
the basis properly is faced in Section 3, where∞-HBVMs will be introduced.
Therefore, just in the present section, to avoid confusion,we will always specify
what is the basis we are working with. This will be not necessary anymore starting
from Section 3, after determining the optimal basis.

In this section we assume thatH(y) is a polynomial, which implies that the
integrand in (2) is also a polynomial so that the line integral can be exactly com-
puted by means of a suitable quadrature formula. It is easy toobserve that in
general, due to the high degree of the integrand function, such quadrature formula
cannot be solely based upon the available abscissae{ci}: one needs to introduce
an additional set of abscissae,ĉ1, . . . , ĉr, distinct from the nodes{ci}, in order to
make the quadrature formula exact:

∫ 1

0

σ̇(t0 + τh)T∇H(σ(t0 + τh))dτ = (6)

s∑

i=1

βiσ̇(t0 + cih)
T∇H(σ(t0 + cih)) +

r∑

i=1

β̂iσ̇(t0 + ĉih)
T∇H(σ(t0 + ĉih)),

whereβi, i = 1, . . . , s, andβ̂i, i = 1, . . . , r, denote the weights of the quadrature
formula corresponding to the abscissae{ci} and{ĉi}, respectively, i.e.,

βi =

∫ 1

0

(
s∏

j=1,j 6=i

t− cj
ci − cj

)(
r∏

j=1

t− ĉj
ci − ĉj

)
dt, i = 1, . . . , s,

(7)

β̂i =

∫ 1

0

(
s∏

j=1

t− cj
ĉi − cj

)(
r∏

j=1,j 6=i

t− ĉj
ĉi − ĉj

)
dt, i = 1, . . . , r.

According to [11], the right-hand side of (6) is calleddiscrete line integral,
while the vectors

Ŷi = σ(t0 + ĉih), i = 1, . . . , r, (8)

are calledsilent stages: they just serve to increase, as much as one likes, the
degree of precision of the quadrature formula, but they are not to be regarded as
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unknowns since, from (5), they can be expressed in terms of linear combinations
of thefundamental stages(4).

In [2], the method HBVM(k,s), with k = s+ r is then defined by substituting
the quantities in (5) into the right-hand side of (6) and by choosing the unknowns
{γj} in order that the resulting expression vanishes.

Instead of carrying out our computation on the right-hand side of (6), as was
done in [2], we apply the procedure directly to the original line integral appearing
in the left-hand side. Of course, since these two expressions are equal, the final
formula will exactly match the HBVM(k,s) method, written in a different guise.

With this premise, by considering the first expansion in (5),the conservation
property reads

s∑

j=1

γTj

∫ 1

0

Pj(τ)∇H(σ(t0 + τh))dτ = 0, (9)

which, as is easily checked, is certainly satisfied if we impose the following set of
orthogonality conditions

γj = ηj

∫ 1

0

Pj(τ)J∇H(σ(t0 + τh))dτ, j = 1, . . . , s, (10)

with {ηj} suitablynonzeroscaling factors that will be defined in a while. Then,
from the second relation of (5) we obtain, by introducing theoperator

L(f ; h)σ(t0 + ch) = (11)

σ(t0) + h

s∑

j=1

ηj

∫ c

0

Pj(x)dx

∫ 1

0

Pj(τ)f(σ(t0 + τh))dτ, c ∈ [0, 1],

thatσ is the eigenfunction ofL(J∇H ; h) relative to the eigenvalueλ = 1:

σ = L(J∇H ; h)σ. (12)

Definition 1. Equation (12) will be called theMaster Functional Equationdefin-
ing σ.

Remark 2. We also observe that, from (10) and the first relation in (5), one ob-
tains the equations

σ̇(t0 + cih) =

s∑

j=1

ηjPj(ci)

∫ 1

0

Pj(τ)J∇H(σ(t0 + τh))dτ, i = 1, . . . , s,

(13)
which may be viewed asextended collocation conditionsaccording to [11, Sec-
tion 2], where the integrals are (exactly) replaced by discrete sums (see, e.g., (6)–
(7)).
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To practically computeσ, we set (see (4) and (5))

Yi = σ(t0 + cih) = y0 + h

s∑

j=1

aijγj, i = 1, . . . , s, (14)

where

aij =

∫ ci

0

Pj(x)dx, i, j = 1, . . . , s. (15)

Inserting (10) into (14) yields the final formulae which define the HBVMs class
based upon the basis{Pj}:

Yi = y0+h

∫ 1

0

(
s∑

j=1

ηjaijPj(τ)

)
J∇H(σ(t0+τh))dτ, i = 1, . . . , s. (16)

The constants{ηj} have to be chosen in order to make the formula consistent.
Problem (14)–(16) can be actually solved, provided that allthe{ηj} are different
from zero,6 and the matrix




∫ c1
0
P1(x)dx . . .

∫ cs
0
P1(x)dx

...
...∫ c1

0
Ps(x)dx . . .

∫ cs
0
Ps(x)dx




is nonsingular (which we shall obviously assume hereafter). Indeed, such a matrix
allows us, by using (5), to reformulate equation (16) in terms of the (unknown)
fundamental stages (4). Let us now formally set

f(y) = J∇H(y), (17)

and report a few examples for possible choices of the basis{Pj(x)}.

1. In [11] we have chosen{P1(x), . . . , Ps(x)} as the Newton basis. This has
allowed us the construction of a family of methods of order 2 and 4.

2. In [2], the abscissae{c0 = 0} ∪ {ci} ∪ {ĉi} are disposed according to a
Lobatto distribution withk + 1 points in [0, 1] and{P1(x), . . . , Ps(x)} is
the shifted Legendre basis in the interval[0, 1].7 Consequently, choosing in
(16) t0 = 0, h = 1, andf(y(τ)) = Pj(τ), the consistency condition yields

ηj =

(∫ 1

0

P 2
j (x)dx

)−1

= 2j − 1, j = 1, . . . , s, (18)

6For example, the choicePj(x) = xj−1, j = 1, . . . , s, would lead toη1 = 1, andηj = 0,
j = 2, . . . , s. This implies that, with this choice of the basis,σ can only be a line (i.e.,s = 1).

7More precisely,Pj(x) is here the shifted Legendre polynomial of degreej − 1, j = 1, . . . , s.
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which is exactly the value found in [2]. In such a case, it has been shown that
the resulting method has order2s, just the same as the generating Lobatto
IIIA method (obtained fork = s).

3. In a similar way, when using the Lagrange basis{ℓj(x)}, by settingf(y(τ)) ≡
1, one obtainsηj = 1/bj with

bj =

∫ 1

0

ℓj(x)dx, ℓj(x) =
s∏

i=1, i 6=j

x− ci
cj − ci

. (19)

Consequently, formulae (16) become

Yi = y0 + h

∫ 1

0

(
s∑

j=1

aij
bj
ℓj(τ)

)
J∇H(σ(t0 + τh))dτ, i = 1, . . . , s.

(20)
Moreover, by introducing the new variablesKi = σ̇(t0 + cih), which are
therefore related to theYi as

Yi = y0 + h

s∑

j=1

aijKj, i = 1, . . . , s,

system (20) can be recast in the equivalent form provided by theextended
collocation conditions(13):

Ki =
1

bi

∫ 1

0

ℓi(τ)J∇H(σ(t0 + τh))dτ, i = 1, . . . , s. (21)

Formulae (21) are the ones E. Hairer proposed in the general case, that is for any
kind of Hamiltonian function. They were calledEnergy Preserving variant of
Collocation Methods(EPCMs) [7]. The above discussion then proves that if the
integral can be substituted by a finite sum, as in the case whereH(y) is a poly-
nomial, formulae (16), and consequently (21), become a HBVM(k, s), with a
suitable value ofk.8

For sake of completeness, we report the nonlinear system associated with the
HBVM (k, s) method, in terms of the fundamental stages{Yi} and the silent stages
{Ŷi} (see (8)), by using the notation (17). In this context, they represent the dis-
crete counterpart of (16), and may be directly retrieved by evaluating, for example,

8The same clearly happens when the integral is onlyapproximatedby a finite sum.
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the integrals in (16) by means of the (exact) quadrature formula introduced in (6):

Yi = y0 + h




s∑

l=1

βl




s∑

j=1

ηjaijPj(cl)


 f(Yl) +

r∑

l=1

β̂l




s∑

j=1

ηjaijPj(ĉl)


 f(Ŷl)




(22)

= y0 + h

s∑

j=1

ηjaij

(
s∑

l=1

βlPj(cl)f(Yl) +

r∑

l=1

β̂lPj(ĉl)f(Ŷl)

)
, i = 1, . . . , s.

From the above discussion it is clear that, in the non-polynomial case, supposing
to choose the abscissae{ĉi} so that the sums in (22) converge to an integral as
r = k − s → ∞, the resulting formula is (16).9 Consequently, EPCMs may be
viewed as the limit of HBVMs family, when the Lagrange basis is considered, as
the number of silent stages grows to infinity.

The above arguments also imply that HBVMs may be as well applied in the
non-polynomial case since, in finite precision arithmetic,HBVMs are indistin-
guishable from their limit formulae (16), when a sufficient number of silent stages
is introduced. The aspect of having apracticalexact integral, fork large enough,
was already stressed in [2, 10, 11].

3 Infinity Hamiltonian Boundary Value Methods

As is easily argued (and emphasized in Remark 1), the choice of the basis along
which σ̇(t0+ τh) is expanded (see (5)), somehow influences the shape of the final
formulae (16), that is, to two different polynomial bases there may correspond
two different families of formulae.10 The question then naturally arises about the
best possible choice of the basis to consider. This issue hasbeen a crucial point in
devising the class of HBVMs in [2] and deserves a particular attention.11

Indeed, we recall that our final goal is to devise methods thatmake the sum (9),
representing the line integral, vanish. This is accomplished by the orthogonality
conditions (10), whose effect is to make null each term of thesum in (9). It follows
that such conditions are in general too demanding, in that they are sufficient but
not necessary to get conservativeness. In fact, the sum could in principle vanish
even in the case when two ore more of its terms are different from zero. Thisextra
constraintmay affect the general properties of the conservative methods we are
interested in, and in particular their order.

This was a problem already encountered in [11] where the authors realized
that the use of the Newton basis didn’t assure the expected growth of the order of

9This obvious requirement for the abscissae will be always assumed in the sequel.
10For example, see the method presented in subsection 4.2.
11The argument presented here is the analog of the one appearing in [11, Remark 3.1].
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the resulting method when the degree of the polynomialσ(t0+τh) was increased.
This barrier has been definitively overcome in [2], where it was understood that
the proper polynomial basis to be used by default was that of the shifted Legendre
polynomials in the interval[0, 1]. We emphasize that, contrary to what happens
for the Lagrange and Newton bases, the Legendre polynomialsare orthogonal and
symmetric in the interval[0, 1] and in addition they areabscissae-free, that is they
by no means depend on the specific distribution of the abscissae{ci} adopted.
This, in turn, implies that theMaster Functional Equation(12) is independent of
the choice of both the abscissae{ci} and{ĉi}: the only requirement being that (6)
holds true.12

From the above arguments, it is clear that the orthogonalityconditions (10),
i.e., the fulfillment of theMaster Functional Equation(12), is only a sufficient
condition for the conservation property (9) to hold. Such a condition becomes
also necessary, when the basis{Pj} is orthogonal.

Theorem 1. Let{Pj} be an orthogonal basis on the interval[0, 1]. Then, assum-
ingH(y) to be suitably differentiable, (9) implies that each term inthe sum has to
vanish.

Proof Let us consider, for simplicity, the case of an orthonormal basis, and
the expansion

g(τ) ≡ ∇H(σ(t0 + τh)) =
∑

ℓ≥1

ρℓPℓ(τ), ρℓ = (Pℓ, g), ℓ ≥ 1,

where, in general,

(f, g) =

∫ 1

0

f(τ)g(τ)dτ.

Substituting into (9), yields
s∑

j=1

γTj (Pj, g) =
s∑

j=1

γTj

(
Pj,
∑

ℓ≥1

ρℓPℓ

)
=

s∑

j=1

γTj ρj = 0.

Since this has to hold whatever the choice of the functionH(y), one concludes
that

γTj ρj = 0, j = 1, . . . , s. � (23)

Remark 3. In the case where{Pj} is the shifted Legendre basis, from (23) one
derives that

γj = Sρj , i = 1, . . . , s,

whereS is any nonsingular skew-symmetric matrix. The natural choiceS = J
then leads to (10), withηj = (Pj, Pj)

−1 = 2j − 1.

12We emphasize that this is not the case when using, for example, the Lagrange basis.
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The use of the Legendre basis allows the resulting methods tohave the best
order and stability properties that one can expect. This aspect is elucidated in
the two theorems and the corollary below, which represent the main result of the
present work.

Although, up to now, we have maintained the treatment of HBVMs at a general
level, it is clear that, in view of the result presented in Theorem 2, when the curve
σ(t0 + τh) is assumed of polynomial type, we will implicitly adopt the Legendre
basis.13 This important assumption will be incorporated in the HBVM methods
from now on: if needed, the use of any other kind of basis will be explicitly stated,
in order not to create confusion.

Taking into account the consistency conditions (18), formula (16)–(15) takes
the form:

Yi = y0 + h

∫ 1

0

(
s∑

j=1

(2j − 1)aijPj(τ)

)
J∇H(σ(t0 + τh))dτ, i = 1, . . . , s.

(24)
If the HamiltonianH(y) is a polynomial, the integral appearing at the right-
hand side is exactly computed by a quadrature formula, thus resulting into a
HBVM(k,s) method with a sufficient number of silent stages. As alreadystressed
in the previous section, in the non-polynomial case such formulae represent the
limit of the sequence HBVM(k,s), ask → ∞.

Definition 2. We call the new limit formula (24) anInfinity Hamiltonian Boundary
Value Method(in short,∞-HBVM or HBVM(∞, s)).

We emphasize that, in the non-polynomial case, (24) becomesan operative
method, only after that a suitable strategy to approximate the integral is taken
into account (see the next section for additional examples). In the present case,
if one discretizes theMaster Functional Equation(11)–(12), HBVM(k, s) are
then obtained, essentially by extending the discrete problem (22) also to the silent
stages (8). In order to simplify the exposition, we shall use(17) and introduce the
following notation:

{ti} = {ci}∪{ĉi}, {ωi} = {βi}∪{β̂i}, yi = σ(t0+tih), fi = f(σ(t0+tih)).
(25)

The discrete problem defining the HBVM(k, s) then becomes, withηj = 2j − 1,

yi = y0 + h

s∑

j=1

ηj

∫ ti

0

Pj(x)dx

k∑

ℓ=1

ωℓPj(tℓ)fℓ, i = 1, . . . , k. (26)

13Actually, the termHamiltonian Boundary Value Methodhas been coined in [2], after intro-
ducing the Legendre basis.
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We can cast the set of equations in vector form, by introducing the vectorsy =
(yT1 , . . . , y

T
k )

T , e = (1, . . . , 1)T ∈ R
k, and the matricesI,P ∈ R

k×s, with

Iij =

∫ ti

0

Pj(x)dx, Pij = Pj(ti), (27)

Λ = diag(η1, . . . , ηs), Ω = diag(ω1, . . . , ωk),

as
y = e⊗ y0 + h(IΛPTΩ)⊗ I f(y), (28)

with an obvious meaning off(y). Consequently, the method can be seen as a
Runge-Kutta method with the following Butcher tableau:

t1
...
tk

IΛPTΩ

ω1 . . . ωk

(29)

Remark 4. We observe that, provided that the matrixΛ is independent of the basic
abscissae{ci} (as in the case of the Legendre basis), the role of such abscissae
and of the silent abscissae{ĉi} is interchangeable. This is not true, for example,
for the Newton and Lagrange bases.

The following result then holds true.

Theorem 2. Provided that the quadrature has order at least2s (i.e., it is exact for
polynomials of degree at least2s− 1), HBVM(k,s) has orderp = 2s ≡ 2 deg(σ),
whatever the choice of the abscissaec1, . . . , cs.

Proof From the classical result of Butcher (see, e.g., [9, Theorem7.4]), the
thesis follows if the simplifying assumptionsC(s), B(p), p ≥ 2s, andD(s − 1)
are satisfied. By looking at the method (28)–(29), one has that the first two (i.e.,
C(s) andB(p), p ≥ 2s) are obviously fulfilled: the former by the definition of
the method, the second by hypothesis. The proof is then completed, if we prove
D(s − 1). Such condition can be cast in matrix form, by introducing the vector
ē = (1, . . . , 1)T ∈ R

s−1, and the matrices

Q = diag(1, . . . , s− 1), D = diag(t1, . . . , tk), V = (tj−1
i ) ∈ R

k×s−1,

(see also (27)) as

QV TΩ
(
IΛPTΩ

)
=
(
ē eT − V TD

)
Ω,

i.e.,

12



PΛITΩV Q =
(
e ēT −DV

)
. (30)

Since the quadrature is exact for polynomial of degree2s− 1. one has

(
ITΩV Q

)
ij

=

(
k∑

ℓ=1

ωℓ

∫ tℓ

0

Pi(x)dx (jt
j−1
ℓ )

)
=

(∫ 1

0

∫ t

0

Pi(x)dx(jt
j−1)dt

)

=

(
δi1 −

∫ 1

0

Pi(x)x
jdx

)
, i = 1, . . . , s, j = 1, . . . , s− 1,

where the last equality is obtained by integrating by parts,with δi1 the Kronecker
symbol. Consequently,

(
PΛITΩV Q

)
ij

=

(
1−

s∑

ℓ=1

ηℓPℓ(ti)

∫ 1

0

Pℓ(x)x
jdx

)
= (1− tji ),

i = 1, . . . , k, j = 1, . . . , s− 1,

that is, (30), where the last equality follows from the fact that

s∑

ℓ=1

ηℓPℓ(t)

∫ 1

0

Pℓ(x)x
jdx = tj , j = 1, . . . , s− 1. �

Concerning the stability, the following result holds true.

Theorem 3. For all k such that the quadrature formula has order at least2s ≡
2 deg(σ), HBVM(k,s) is perfectlyA-stable, whatever the choice of the abscissae
c1, . . . , cs.

Proof As it has been previously observed, a HBVM(k, s) is fully charac-
terized by the corresponding polynomialσ which, for k sufficiently large (i.e.,
assuming that (6) holds true), satisfies theMaster Functional Equation(11)–(12),
which is independent of the choice of the nodesc1, . . . , cs (since we consider
the Legendre basis). When, in place off(y) = J∇H(y) we put the test equa-
tion f(y) = λy, we have that the collocation polynomial of the Gauss-Legendre
method of order2s, sayσs, satisfies theMaster Functional Equation, since the in-
tegrands appearing in it are polynomials of degree at most2s− 1, so thatσ = σs.
The proof completes by considering that Gauss-Legendre methods are perfectly
A-stable.�

A worthwhile consequence of Theorems 2 and 3 is that one can transfer to
HBVM (∞, s) all those properties of HBVM(k,s) which are satisfied starting from
a givenk ≥ k0 on: for example, the order and stability properties.
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Corollary 1. Whatever the choice of the abscissaec1, . . . , cs, HBVM(∞, s) (24)
has order2s and is perfectlyA-stable.

Remark 5. From the result of Corollary 1, it follows that HBVM(∞, s) has order
2s and is perfectlyA-stable foranychoice for the abscissaec1, . . . , cs. Since such
abscissae can be arbitrarily chosen, we can formally place them at the roots of
the Gauss-Legendre polynomial of degrees. On the other hand, by considering
that, at such abscissae, by setting{ℓi(c)} and{bi} the corresponding Lagrange
polynomials and quadrature weights, respectively (see (19)),

1

bi

∫ 1

0

Pj(x)ℓi(x)dx =
1

bi

s∑

r=1

brPj(cr)ℓi(cr) = Pj(ci), j = 1, . . . , s,

one obtains (withηj = 2j − 1 and by using the notation (17)):

σ′(t0 + cih) =
s∑

j=1

ηjPj(ci)

∫ 1

0

Pj(τ)f(σ(t0 + τh))dτ

=

s∑

j=1

ηj

(
1

bi

∫ 1

0

Pj(x)ℓi(x)dx

)∫ 1

0

Pj(τ)f(σ(t0 + τh))dτ

=
1

bi

∫ 1

0

(
s∑

j=1

ηjPj(τ)

∫ 1

0

Pj(x)ℓi(x)dx

)
f(σ(t0 + τh))dτ

=
1

bi

∫ 1

0

ℓi(τ)f(σ(t0 + τh))dτ, i = 1, . . . , s.

Consequently,for any choice of the abscissae{ci}, HBVM(∞, s) provide the same
polynomialσ as the “optimal EPCMs” (21) of order2s [7]. 14 Conversely, an
EPCM is optimal (i.e., it has order2s) only when the abscissaec1, . . . , cs define
a quadrature formula of order at least2s− 1, whereas different choices result in
methods of lower order [7, Theorem 1].

Remark 6. We also observe that, due to the choice of the shifted Legendre poly-
nomial basis (see (24))

HBVM(∞, s) = lim
k→∞

HBVM(k, s),

whatever is the choice of the fundamental abscissae{ci}. Consequently, for allk
large enough, so that theMaster Functional Equation(12) holds true (e.g., in the

14In this sense, they areequivalent, even though they generate different discrete problems.
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case of a polynomial HamiltonianH(y)), all HBVM(k, s) provide the same poly-
nomialσ of degrees, independently of the choice of the abscissae{ci}. Hence,
they areequivalentto each other. This result doesn’t change in the case where
H(y) is not a polynomial, provided thatH(y) is sufficiently differentiable. In this
case, in fact, one formally obtains, in place of theMaster Functional Equation
(12), an equation of the form

σk = L(J∇H ; h)σk + ψk(h), (31)

whereψk(h) = O(hqk−s+2), qk being the degree of precision of the quadrature at
the right-hand side in (6), so thatqk → ∞ ask → ∞. From (12) and (31), one
then obtains that ash → 0, assuming thatf is Lipschitzian with constantµ, and
for a suitable constantM independent ofh:

‖σk − σ‖ ≤ hµM‖σk − σ‖+ ‖ψk(h)‖,

i.e.,

‖σk − σ‖ ≤ (1− hµM)−1‖ψk(h)‖ = O(hqk−s+2) → 0, k → ∞.

One then concludes that, when using finite precision arithmetic, σk is indistin-
guishable fromσ, for all k large enough.

Example 1. As previously mentioned, for the methods studied in [2], based on
a Lobatto distribution of the nodes{c0 = 0, c1, . . . , cs} ∪ {ĉ1, . . . , ĉk−s}, one
has thatdeg(σ) = s, so that the order of HBVM(k,s) turns out to be2s, with a
quadrature satisfyingB(2k).

Example 2. For the same reason, when one considers a Gauss distributionfor
the abscissae{c1, . . . , cs}∪{ĉ1, . . . , ĉk−s}, one also obtains a method of order2s
with a quadrature satisfyingB(2k). This case will be further studied in Section 5.

Remark 7. Finally, we also mention that, from Remark 4, HBVM(k,s) are sym-
metric methods,15 provided that the abscissae{ti} (see (25)) are symmetrically
distributed (see also [2]).

4 Generalization of Hamiltonian BVMs

The approach that has allowed the construction of methods that conserve energy
functions of polynomial type is quite general: that is, by nomeans it depends
on the particular vector space generating the curveσ(t) nor on the quadrature

15According to thetime reversal symmetry conditiondefined in [3, p. 218].
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technique used. As was emphasized in [11, Section 2], it solely relies on the
following two ingredients: the definition ofdiscrete line integraland theextended
collocation conditions(13), which zero the line integral (6).

Therefore, in a more general context, this procedure can be formalized as fol-
lows. One first picks a curveσ(t0+τh), τ ∈ [0, 1], joining two points of the phase
spacey0 = σ(t0) andy1 = σ(t0 + h). Such a curve is assumed to lie in a proper
finite dimensional vector spaceW = span{P1(x), . . . , Ps(x)}, where nowPj(x),
j = 1, . . . , s, are any linearly independent functions. Therefore the curvesσ(t)
andσ̇(t) will admit an expansion in the form (5).

The fundamental hypothesis, for this approach to work, is that the choice of
W must guarantee that the functionsPj(τ)∇H(σ(t0 + τh)) appearing in (9) (and
henceσ̇(t)T∇H(σ(t))) be elementary integrable, that is they are required to admit
a primitive that can be expressed in terms of elementary functions. If this is the
case, all the steps performed to obtain (16) may be repeated with the integral
substituted by the primitive.

This represents a generalization of what done for polynomial Hamiltonian
functions not only because the vector spaceW may be generated by non-poly-
nomial functions but also because the analytic solution of the line integral may be
carried out by any available technique. Hereafter, we report a couple of examples
in the class (24).16

4.1 A method of order two

We consider a separable Hamiltonian function (for simplicity we assumem = 1)

H(q, p) = V (p)− U(q). (32)

Let σ(t) be the segment joiningy0 = (q0, p0)
T to y1 = (q1, p1)

T :

σ(t0 + τh) = y0 + τ(y1 − y0).

We havec0 = 0, c1 = 1, and the corresponding method (24) becomes:




q1 − q0
h

p1 − p0
h


 =




∫ 1

0

V ′(p0 + τ(p1 − p0))dτ
∫ 1

0

U ′(q0 + τ(q1 − q0))dτ


 =




V (p1)− V (p0)

p1 − p0
U(q1)− U(q0)

q1 − q0


 .

(33)

16While the method in Section 4.1 is equivalently obtainable by applying either (24) or (16), the
same is not true for the fourth-order method derived in Section 4.2 where, the use of the Lagrange
basis, would produce a coefficientb2 = 0 (appearing as a denominator in the resulting formulae
(21)).
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Formula (33) is one of the simplestdiscrete gradient methodsdue to Itoh and
Abe [12], whose general form, for non-separable Hamiltonian functions with one
degree of freedom, reads




q1 − q0
h

p1 − p0
h


 = J




H(q1, p0)−H(q0, p0)

q1 − q0
H(q1, p1)−H(q1, p0)

p1 − p0


 . (34)

The vector appearing at the right-hand side of (34) is obtained by replacing the
partial derivatives ofH(q, p) with increments along theq andp axes. Method (34)
is in general first order and nonsymmetric. However, when confined to separable
Hamiltonian systems, it turns out to be second order and symmetric.17

4.2 A method of order four

To construct a method of order four in the form (24) applied to(32), we pick a
curveσ(t) of degree two, based upon the abscissaec0 = 0, c1 = 1/2, andc2 = 1.
Such a method has been already described in [11] for polynomial Hamiltonian
functions: here we consider its generalization to the non-polynomial case. Setting
Y1 = (q1/2, p1/2)

T and, observing thatY2 = (q1, p1)
T , the two components of the

curveσ(t0 + τh) are
(
σ1(t0 + τh)

σ2(t0 + τh)

)
=

(
2(q0 − 2q1/2 + q1)τ

2 − (3q0 − 4q1/2 + q1)τ + q0

2(p0 − 2p1/2 + p1)τ
2 − (3p0 − 4p1/2 + p1)τ + p0

)
.

(35)
Consequently, (24) becomes

Y1 ≡




q1/2

p1/2


 =




q0

p0


 + h




∫ 1

0

(−
3

2
τ +

5

4
)V ′(σ2(t0 + τh))dτ

∫ 1

0

(−
3

2
τ +

5

4
)U ′(σ1(t0 + τh))dτ


 ,

Y2 ≡




q1

p1


 =




q0

p0


+ h




∫ 1

0

V ′(σ2(t0 + τh))dτ

∫ 1

0

U ′(σ1(t0 + τh))dτ


 .

(36)
Substituting (35) into (36) we obtain a system in the unknowns q1/2, p1/2, q1, p1.
Looking at (36), we realize that even in the simpler case of a system deriving

17A generalization of (34) introduced in [13] also becomes method (33) when applied to Hamil-
tonian functions in the form (32).
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from a Hamiltonian function in the form (32), the elementaryintegrability of the
integrals in (24) is not a priori guaranteed. This means that, in this case, we cannot
arrive at a general formula analogous to (33), in terms ofU(q) andV (p).

On the other hand, in several cases of interest, such primitive can be explicitly
computed: hereafter we report a significant example, which we shall use later in
the numerical tests in Section 5.

Example 3. The role of this example is also to show that, when finite precision
arithmetic is used, it may benot convenientto use theinfinite versionof the meth-
ods, even if the integrals can be analytically evaluated. This will be evident from
the numerical results in Section 5.4. The system we consideris the one defined by
the Hamiltonian function

H(q, p) = a(log q − q) + b(log p− p), (37)

wherea andb are positive constants. The associated system (1) reads

q̇ = b

(
1

p
− 1

)
, ṗ = −a

(
1

q
− 1

)
. (38)

This system is strictly related to the Lotka-Volterra model
{
q̇ = b q (1− p),
ṗ = −a p (1− q),

(39)

in that system (39) may be recast as the Poisson systemẏ = 1
η(q,p)

J∇H(y), where

η(q, p) = − 1
qp

is calledintegrating factor.
Systems (39) and (38) share the same Hamiltonian function (37) as first in-

tegral and, consequently, they share the same curves as trajectories in the phase
plane. Method (36) applied to (39) reads




q1/2 − q0

h/2

p1/2 − p0

h/2


 =




−b+ 3
4b

log(|p0/p1|)
p0−2p1/2+p1

+ 1
2

b
C1

p0−8p1/2+7p1

p0−2p1/2+p1

·
(
arctanh(

−3p0+4p1/2−p1

C1

)− arctanh(
p0−4p1/2+3p1

C1

)
)

a− 3
4a

log(|q0/q1|)
q0−2q1/2+q1

− 1
2

a
C2

q0−8q1/2+7q1
q0−2q1/2+q1

·
(
arctanh(

−3q0+4q1/2−q1
C2

)− arctanh(
q0−4q1/2+3q1

C2

)
)




, (40)




q1 − q0
h

p1 − p0
h


 =




−b− 2b
C1

[
arctanh(

p0−4p1/2+3p1

C1

) + arctanh(
3p0−4p1/2+p1

C1

)
]

a+ 2a
C2

[
arctanh(

q0−4q1/2+3q1
C2

) + arctanh(
3q0−4q1/2+q1

C2

)
]


 ,

(41)
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where
{
C1 = (p20 + 16p21/2 + p21 − 8p0p1/2 − 2p0p1 − 8p1/2p1)

1/2,

C2 = (q20 + 16q21/2 + q21 − 8q0q1/2 − 2q0q1 − 8q1/2q1)
1/2.

5 HBVMs based upon Gauss quadrature

As anticipated in Example 2, we now study the properties of the HBVM(k, s)
which is defined over the set ofk distinct abscissae,

{t1, . . . , tk} ≡ {c1, . . . , cs} ∪ {ĉ1, . . . , ĉk−s},

coinciding with the Gauss-Legendre nodes in[0, 1], i.e., the roots of the shifted
Legendre polynomial of degreek. The corresponding polynomialσ has then de-
grees. By virtue of Theorems 2 and 3 (see also Remark 7), such methods are
symmetric, perfectlyA-stable, and of order2s. They reduce to Gauss-Legendre
collocation methods, whenk = s, and are exact for polynomial Hamiltonian func-
tions of degreeν, provided that

k ≥
νs

2
. (42)

By recalling what stated in Remark 6, for allk sufficiently large so that (6) holds,
HBVM (k, s) based on thek Gauss-Legendre abscissae in[0, 1] are equivalent
to HBVM(k, s) based onk + 1 Lobatto abscissae in[0, 1] (see [2]), since both
methods define the same polynomialσ of degrees.18

As matter of fact, we have run HBVM(k, s) based on Gauss-Legendre nodes,
and HBVM(k, s) based on the Lobatto nodes, obtaining the same results on the
polynomial test problems reported in [2], which are briefly recalled in the sequel.

5.1 Test problem 1

Let us consider the problem characterized by the polynomialHamiltonian (4.1) in
[5],

H(p, q) =
p3

3
−
p

2
+
q6

30
+
q4

4
−
q3

3
+

1

6
, (43)

having degreeν = 6, starting at the initial pointy0 ≡ (q(0), p(0))T = (0, 1)T ,
so thatH(y0) = 0. For such a problem, in [5] it has been experienced a numer-
ical drift in the discrete Hamiltonian, when using the fourth-order Lobatto IIIA
method with stepsizeh = 0.16, as confirmed by the plot in Figure 1. When us-
ing the fourth-order Gauss-Legendre method the drift disappears, even though the

18In the non-polynomial case, they converge to the same HBVM(∞, s), ask → ∞.
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Table 1: Maximum difference between the numerical solutions obtained through
the fourth-order HBVM(k, 2) methods based on Lobatto abscissae and Gauss-
Legendre abscissae for increasing values ofk, problem (45),103 steps with step-
sizeh = 0.1.

k h = 0.1
2 3.97 · 10−1

4 2.29 · 10−3

6 2.01 · 10−8

8 1.37 · 10−11

10 5.88 · 10−13

Hamiltonian is not exactly preserved along the discrete solution, as is shown by
the plot in Figure 2. On the other hand, by using the fourth-order HBVM(6,2)
with the same stepsize, the Hamiltonian turns out to be preserved up to machine
precision, as shown in Figure 3, since such method exactly preserves polynomial
Hamiltonians of degree up to 6. In such a case, the numerical solutions obtained
by using the Lobatto nodes{c0 = 0, c1, . . . , c6 = 1} or the Gauss-Legendre nodes
{c1, . . . , c6} are the same.

5.2 Test problem 2

The second test problem, having a highly oscillating solution, is the Fermi-Pasta-
Ulam problem (see [8, Section I.5.1]), defined by the Hamiltonian

H(p, q) =
1

2

m∑

i=1

(
p22i−1 + p22i

)
+
ω2

4

m∑

i=1

(q2i − q2i−1)
2+

m∑

i=0

(q2i+1 − q2i)
4 , (44)

with q0 = q2m+1 = 0,m = 3, ω = 50, and starting vector

pi = 0, qi = (i− 1)/10, i = 1, . . . , 6.

In such a case, the Hamiltonian function is a polynomial of degree 4, so that
the fourth-order HBVM(4,2) method, either when using the Lobatto nodes or the
Gauss-Legendre nodes, is able to exactly preserve the Hamiltonian, as confirmed
by the plot in Figure 6, obtained with stepsizeh = 0.05. Conversely, by using the
same stepsize, both the fourth-order Lobatto IIIA and Gauss-Legendre methods
provide only an approximate conservation of the Hamiltonian, as shown in the
plots in Figures 4 and 5, respectively.
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Figure 1: Fourth-order Lobatto IIIA method,h = 0.16, problem (43): drift in the
Hamiltonian.
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Figure 2: Fourth-order Gauss-Legendre method,h = 0.16, problem (43):H ≈
10−6.
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Figure 3: Fourth-order HBVM(6,2) method,h = 0.16, problem (43):H ≈ 10−16.
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Figure 4: Fourth-order Lobatto IIIA method,h = 0.05, problem (44):|H−H0| ≈
10−3.
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Figure 5: Fourth-order Gauss-Legendre method,h = 0.05, problem (44):|H −
H0| ≈ 10−3.
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Figure 6: Fourth-order HBVM(4,2) method,h = 0.05, problem (44):|H−H0| ≈
10−14.

22



5.3 Test problem 3 (non-polynomial Hamiltonian)

In the previous examples, the Hamiltonian function was a polynomial. Neverthe-
less, as observed above, also in this case HBVM(k,s) are expected to produce a
practical conservation of the energy when applied to systems defined bya non-
polynomial Hamiltonian function that can be locally well approximated by a poly-
nomial. As an example, we consider the motion of a charged particle in a magnetic
field with Biot-Savart potential.19 It is defined by the Hamiltonian [2]

H(x, y, z, ẋ, ẏ, ż) = (45)

1

2m

[(
ẋ− α

x

̺2

)2

+

(
ẏ − α

y

̺2

)2

+ (ż + α log(̺))2
]
,

with ̺ =
√
x2 + y2, α = eB0, m is the particle mass,e is its charge, andB0 is

the magnetic field intensity. We have used the values

m = 1, e = −1, B0 = 1,

with starting point

x = 0.5, y = 10, z = 0, ẋ = −0.1, ẏ = −0.3, ż = 0.

By using the fourth-order Lobatto IIIA method, with stepsize h = 0.1, a drift is
again experienced in the numerical solution, as is shown in Figure 7. By using
the fourth-order Gauss-Legendre method with the same stepsize, the drift disap-
pears even though, as shown in Figure 8, the value of the Hamiltonian is pre-
served within an error of the order of10−3. On the other hand, when using the
HBVM(6,2) method with the same stepsize, the error in the Hamiltonian decreases
to an order of10−15 (see Figure 9), thus giving a practical conservation. Finally,
in Table 1 we list the maximum absolute difference between the numerical so-
lutions over103 integration steps, computed by the HBVM(k, 2) methods based
on Lobatto abscissae and on Gauss-Legendre abscissae, ask grows, with stepsize
h = 0.1. As expected, the difference tends to 0, ask increases, since the two
sequences of methods tend to the same limit, given by the HBVM(∞, 2) (see (24)
with s = 2).

5.4 Test problem 4 (non-polynomial Hamiltonian)

We finally solve the Hamiltonian system (38) by using the Itho-Abe method (33),
the fourth-order formula (40)–(41), and the HBVM(10,2), which has order four

19 This kind of motion causes the well known phenomenon ofaurora borealis.
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Figure 7: Fourth-order Lobatto IIIA method,h = 0.1, problem (45): drift in the
Hamiltonian.
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Figure 8: Fourth-order Gauss-Legendre method,h = 0.1, problem (45):|H −
H0| ≈ 10−3.
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Figure 9: Fourth-order HBVM(6,2) method,h = 0.1, problem (45):|H −H0| ≈
10−15.
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and degree of precision10 (that is, according to (42), it precisely conserves the
energy of polynomial Hamiltonians of degree up to10). We have seta = b = 1 in
formula (37), and integrated over a time interval[0, 5000] with stepsizeh = 0.5
and(q0, p0) = (0.5, 0.5) as initial condition.

Figure 10 reports the numerical Hamiltonian function associated with the three
methods. The occurrence of jumps in the first two graphs (leftpicture) is due to the
fact that both formulae (33) and (40)–(41) may become ill-conditioned for certain
values of the state vector. For example (see Figure 11), at the two consecutive
timest = 2830.5 and t = 2831, the state vectors associated with the Itoh-Abe
method (33) are, respectively,

[q1, p1] ≃ (0.39988668, 1.4216560)T , [q2, p2] ≃ (0.39988872, 0.67130503)T ,

which shows thatq1 may be very close toq2 even for large values ofh. This
causes some cancellation in the subtraction at the right-hand side of (33) and,
hence, a jump of the subsequent branch of the numerical trajectory on a different
level curve. However, since, in general, the numerical trajectory densely fills the
level curveH(y) = H(y0), it may be argued that the occurrence of such jumps
are systematic and frequent when the dynamics is traced overa long time. The
use of finite arithmetic eventually destroys the theoretical conservation property.
A similar argument may be applied to discuss the behavior of the fourth-order
method (40)–(41).

Although the HBVM method does not provide a theoretical conservation of
the energy, as is the case for the above cited methods, its behavior in finite arith-
metic would suggest the opposite (see the right picture in Figure 10), as already
emphasized at the beginning of Example 3.

6 Conclusions

In this paper, the newly introducedHamiltonian Boundary Value Methods (HB-
VMs), a class of numerical methods able to exactly preserve polynomial Hamilto-
nians of any degree, have been re-derived in a unifying framework. Such frame-
work relies on the use of line integrals, which are approximated by suitable dis-
crete counterparts (actually, they are exact, when the Hamiltonian is a polyno-
mial). In this context, the limit of the methods, as the number of the so called
silent stagestends to infinity, is easily obtained. When the underlying polyno-
mial basis upon which the HBVM is constructed is the Lagrangebasis, such limit
formulae coincide with the recently introducedEnergy Preserving variant of Col-
location Methods; if instead one uses the shifted Legendre polynomial basis,the
corresponding HBVMs have the highest possible order and so do their limit for-
mulae, theInfinity Hamiltonian Boundary Value Methods, independently of the
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Figure 10: Left picture: absolute error of the Hamiltonian function (37) evalu-
ated along the numerical solutions computed by the Itoh-Abemethod (33) (lower
curve) and formula (40)–(41) (upper curve). The jumps are symptomatic of ill-
conditioning of the formulae for certain values of the solution. Right picture: the
same kind of plot produced by the HBVM formula of order4 andk = 10Gaussian
abscissae (|H −H0| ≈ 10−12).
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Figure 11: Trajectory in the phase plane computed by the Itoh-Abe method (33).
The small circles locate the solution at the two consecutivetimest = 2830.5 and
t = 2831. The very close values of the variableq for such two points causes loss
of significant digits in the subsequent branch of the trajectory.
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considered abscissae. Any limit formula, when discretized, fall into the HBVMs
class. Possible extensions of the approach have been also sketched, along with a
number of numerical tests. Such tests confirm that, in the limit of the silent stages
tending to infinity, all HBVMs withs (unknown)fundamental stagestend to the
samelimit method, which is characterized by the eigenfunction (relative to the
unit eigenvalue) of a certain operator, which is independent of the choice of the
abscissae.
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