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Abstract

Recently, a new family of integrators (Hamiltonian Boundéalue Meth-
ods) has been introduced, which is able to precisely coast® energy
function of polynomial Hamiltonian systems and to provideractical con-
servation of the energy in the non-polynomial case.

We settle the definition and the theory of such methods in &meneral
framework. Our aim is on the one hand to give account of thedddgoehav-
ior when applied to general Hamiltonian systems and, on therdand,
to find out what are theptimal formulae, in relation to the choice of the
polynomial basis and of the distribution of the nodes. Suwdiysis is based
upon the notion oéxtended collocation conditiormnd the definition oflis-
crete line integral and is carried out by looking at the limit of such family
of methods as the number of the so cakdldnt stagesends to infinity.
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1 Introduction
We consider canonical Hamiltonian problems in the form
y=JVH(y),  ylt)=yo € R™, (1)

whereJ is a skew-symmetric constant matrix, and the Hamiltorfie(y) is as-
sumed to be sufficiently differentiable. For its numericdégration, the problem
is to find numerical methods which preserié#y) along the discrete solution
{yn}, since this property holds for the continuous solutjdf).

So far, many attempts have been made inside the class of Rutigemeth-
ods, the most successful of them being that of imposing thepscticity of the
discrete map, considering that, for the continuous flow,@geticity implies the
conservation off (y). Concerning symplectic integrators, a backward error-anal
ysis permits to prove that they exactly conserve a modifiethiianian, even
though this fact clearly does not always guarantee a pragsditgtive behavior of
the discrete orbits.

On the other hand, it is possible to follow different appitoeto derive geo-
metric integrators which are energy-preserving. This leshldone, for example,
in the pioneering work [6], and later in [14], whedescrete gradient methodse
introduced and studied. An additional example of energgs@rving method is
the Averaged Vector Field (AVRAnethod defined in[15] (see also [4]). By the
way, the latter method can be retrieved by the methods hedesst

More recently, in{[2] a new family of one-step methods hamba&oduced,
capable of providing a numerical solutidm,, } of (I), along which the energy
function H (y) is precisely conserved, in the case where this function ©ynp-
mial (see alsd [10, 11] 1]).

These methods, naméthmiltonian Boundary Value Metho@slBVMshere-
after), may be also thought of as Runge-Kutta methods wierenternal stages
are split into two categories:

- thefundamental stagesvhose number, say; is related to the order of the
method,;

- thesilent stageswhose number, say, has to be suitably selected in order
to assure the energy conservation property for a polynomig) of given
degreev; the higher is/, the higher must be.

The resulting method is denoted by HB{M s)EI wherek = s + r is the total
number ofunknownstages.

1The denominatiokBVM with k stepsanddegrees was used in[2].



In [2,[11] it has also been shown that these new methods mr@vigractical
conservation of the energy even in the non-polynomial cteeterm “practical”
means that, in many general situations, when the numbelenit sitages is high
enough, the method makes no distinction between the funéfig) and its poly-
nomial approximation, being the latter in a neighborhoodinés of the former,
wherees denotes the machine precision.

Another relevant issue to be mentioned is that the commnailticost for the
solution of the associated nonlinear system is essentmalBpendent of the num-
ber of silent stages, and only dependssdsee [2] 1]). This comes from the fact
that the silent stages are actually linear combinatione®fundamental stages.

These two aspects motivate the following questiahat is, if any, the limit
method when the number of silent stages grows to infinity?

This question was first posed by Ernst Halftevho also provided a partial
answer by stating formulaé _(21), which he calledergy Preserving variant of
Collocation Method$EPCMs hereatfter)[[7]. We provide a proof of his statement
by clarifying the connection between the limit formulae ah8VMs: we show
that actually one can define several different limit mettfbelach one associated
to the specific polynomial basis, as well as to the choice ®fttscissae distribu-
tion, used to construct the sequence of HBVMs. For exam@&Ms are based
upon the use of Lagrange polynomials, while, working with ¢hifted Legendre
basis, yields to different limit methods, that we have @hllginity Hamiltonian
Boundary Value Method# short,co-HBVMsor HBVM(o, s), beings the num-
ber of theunknownfundamental stages).

Our aim in this paper is threefold:

1. We settle the definition of HBVMSs in a more general framewaiso de-
riving the general formulation of the limit formulae

lim HBVM (&, s).

k—o00
In particular, we show that such limit coincides with EPCAke Lagrange
polynomial basis is used (Sectioh 2).

2. In Sectio_B, we introduce the new clas®ofHBVMs, which are the limit
formulae corresponding to the HBVMs based upon the shiftegebdre
polynomial basis. We prove that the order of such formulathéssame
as the Gauss-Legendre methods, thatsigwheres is the number of the
unknown fundamental stages).

2During the international conference “ICNAAM 2009”, Rethgm Crete, Greece, 18-22
September 2009, after the talks, by the first two authorsrgvHBVMs were presented.
3In the sense that they generate different discrete problems



3. We mention the case whefé(y) belongs to vector spaces different from
that of polynomials, thus providing a natural (and trivigdneralization of
the original formulae (see Sectibh 4). Moreover, in the polyial case, we
determine th@ptimaldistribution of the nodes (Sectigh 5).

We stress that any finite approximation of EPCMs>ofrHBVMs based on
quadratures leads back to HBVK|§) methods, fok high enough.

We address all the points listed above, by slightly modidyihe approach
followed to define the class of HBVMs inl[2].

2 Reformulation of Hamiltonian BVMs

The key formula which HBVMs rely on, is tHee integraland the related prop-
erty of conservative vector fields:

1
H(y1) — H(yo) = h/ o(to +7h)'VH(o(ty + 7h))dr, for anyy, ¢ R*™,
0
(2)
wheres is any smooth function such that
O'(to) = Yo, O'(t(] + h) = Y1 (3)

Here we consider the case whete) is a polynomial (of degree at most, yield-
ing an approximation to the true solutig(¥) in the time intervalty, to + h]. The
numerical approximation for the subsequent time-sigpis then defined by (3).

After introducing a set of distinct abscissa@, ..., cs, (0 < ¢; < 1)B we set
K:U(to—l-cl'h), izl,...,S, (4)
so thato(¢) may be thought of as an interpolation polynomigl,i = 1,...,s,

being the internal stages.
Let us consider the following expansionsagf) ando (t) for t € [to, to + hl:

ol h) = S P ol k) =w+h Y [ Pa)de, ©)

J=1

where{P;(t)} is any suitable basis of the vector space of polynomials gfete
at mosts — 1 and the (vector) coefficientgy;} are to be determinetl. Before
proceeding, one important remark is in order.

4As a convention, when = 0 is to be considered, as in the case of the Lobatto abscissae in
[0, 1], thency = 0 is formally added to the abscisseg . . ., ¢s, and the subsequent formulae are
modified accordingly.

SMore general function spaces will be considered in the deque
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Remark 1. As will be clear in a while, we observe that the numerical rodth
which the following procedure will define is “basis-depentigin that to different
choices of the basigP;(t) } there will, in general, correspond different numerical
methods. In this section, in order to let the theory be pressbias general as
possible, we leave the basis not better specified. This lllivaus to achieve the
results listed at point 1. in the introduction. The questadiout how to choose
the basis properly is faced in Sectibh 3, wheteHBVMs will be introduced.
Therefore, just in the present section, to avoid confusienwill always specify
what is the basis we are working with. This will be not necasaaymore starting
from Section3, after determining the optimal basis.

In this section we assume thAt(y) is a polynomial, which implies that the
integrand in[(R) is also a polynomial so that the line intégam be exactly com-
puted by means of a suitable quadrature formula. It is eagbserve that in
general, due to the high degree of the integrand functiazh guadrature formula
cannot be solely based upon the available abscissdeone needs to introduce
an additional set of abscissdsg, . . ., ¢, distinct from the nodeéc;}, in order to
make the quadrature formula exact:

/1 o(to +7h)'VH(o(ty + 7h))dT = (6)
0
> Bio(to + i) ' VH(o(to+ c;h) + Y Bio(to+ &) VH (o (to + &h)),
=1 =1

whereg;, i =1,...,s, andB;,i = 1,...,r, denote the weights of the quadrature
formula corresponding to the abscisgag and{¢;}, respectively, i.e.,

1 s T ~
t—cj t—¢j .
;= dt, i1=1,...,s,
o L) (1)

J=1,j#1
(7)
1 s r ~
5 t— ¢ t—¢
B, = / <H J)(H - f)dt, i=1,...,m
0 ST C—Cj L, G — 6
j=1 j=1,5#

According to [11], the right-hand side dfl(6) is calldiscrete line integral
while the vectors R
Y; = o(to + ¢h), 1=1,...,r7, (8)
are calledsilent stages they just serve to increase, as much as one likes, the
degree of precision of the quadrature formula, but they atdmbe regarded as



unknowns since, froni{5), they can be expressed in terms@hticombinations
of thefundamental stage).

In [2], the method HBVME,s), with &k = s 4 r is then defined by substituting
the quantities in(5) into the right-hand side [of (6) and bgasing the unknowns
{v,} in order that the resulting expression vanishes.

Instead of carrying out our computation on the right-hanlg sif (6), as was
done in[2], we apply the procedure directly to the origima¢lintegral appearing
in the left-hand side. Of course, since these two expressiom equal, the final
formula will exactly match the HBVMK,s) method, written in a different guise.

With this premise, by considering the first expansiorLin (B¢, conservation
property reads

2. /0 Py(r)VH(o(ty + Th))dr = 0, )

which, as is easily checked, is certainly satisfied if we isgthe following set of
orthogonality conditions

1
v; :77j/ P;(1)JVH(o(ty+ Th))dr, j=1,...,s, (10)
0

with {n,} suitablynonzeroscaling factors that will be defined in a while. Then,
from the second relation dfl(5) we obtain, by introducingdperator

L(f: oty + ch) = (11)

o(te) + thj /Oc P;(z)dz /0 P;(1)f(o(to + Th))dT, c€0,1],

thato is the eigenfunction of.(JV H; h) relative to the eigenvalug = 1:
o= L(JVH;h)o. (12)

Definition 1. Equation [I2) will be called th&aster Functional Equatiotefin-
ing o.

Remark 2. We also observe that, from_(10) and the first relatior(in (5% ob-
tains the equations

s 1
o(to + ¢;ih) = Z n; Pj(c;) / P;(t)JVH(o(ty+ Th))dr, i=1,...,s,
j=1 0

(13)
which may be viewed asxtended collocation conditioraccording to [11, Sec-
tion 2], where the integrals are (exactly) replaced by détersums (see, e.d.] (6)—

@).



To practically compute, we set (sed (4) andl(5))

Y;:O'(to—FCih):yo—i-hZCLij’}/j, izl,...,S, (14)

j=1
where o
[ :/ P]({L‘)dl‘, ,j=1...,s. (15)
0

Inserting [(10) into[(14) yields the final formulae which defithe HBVMs class
based upon the basf$;}:

1 s
Y, = yo—l—h/ (Z njal-ij(T)> JVH(o(ty+7h))dr, i=1,...,s (16)
o \i=

The constantgn,} have to be chosen in order to make the formula consistent.
Problem [(14)£(16) can be actually solved, provided thahalf, } are different
from zerd{ and the matrix

o Pi(x)de .. [ Pi(x)de
o Py(x)dz ... [ Py(x)dx

is nonsingular (which we shall obviously assume hereaftedeed, such a matrix
allows us, by using (5), to reformulate equatién] (16) in temwhthe (unknown)
fundamental stages!(4). Let us now formally set

fly) =JVH(y), (17)

and report a few examples for possible choices of the Hd3is) }.

1. In [11] we have chosefiP,(x),. .., P(z)} as the Newton basis. This has
allowed us the construction of a family of methods of ordena 4.

2. In [2], the abscissaéc, = 0} U {¢;} U {¢;} are disposed according to a
Lobatto distribution withk + 1 points in[0, 1] and{P;(x), ..., Ps(x)} is
the shifted Legendre basis in the interjall][! Consequently, choosing in
(16)to =0,h =1, andf(y(r)) = P;(7), the consistency condition yields

-1

1
m:(/ PJ.Q(x)dx) =2j—1, j=1,...,5 (18)
0

SFor example, the choic®;(z) = 27~%, j = 1,...,s, would lead top; = 1, andn; = 0,
j=2,...,s. Thisimplies that, with this choice of the basiscan only be a line (i.es = 1).
"More preciselyP;(x) is here the shifted Legendre polynomial of degfeel, j = 1,...,s.
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which is exactly the value found inl[2]. In such a case, it hesrbshown that
the resulting method has ord2y, just the same as the generating Lobatto
[lIA method (obtained fok = s).

3. Inasimilar way, when using the Lagrange bdgigx) }, by settingf (y(7)) =
1, one obtaing); = 1/b; with

b; = /0 1€j(a:)d:c, 0(x) = H S (19)

Cj — ¢
i=1,i#j 7 !

Consequently, formulaé (1L6) become

Yz‘:y0+h/ (Zaw )JVH(U(t0+Th))dT, i=1,...,s.

(20)
Moreover, by introducing the new variablé§ = (¢, + ¢;h), which are
therefore related to thg as

Y;:y()—i-hZCLinj, izl,...,S,
j=1

system[(2D) can be recast in the equivalent form providedbgxtended
collocation conditiong13):

1
K=y [ G0IVHE ) i= s @)
i J0O

Formulae[(211) are the ones E. Hairer proposed in the geresal that is for any
kind of Hamiltonian function. They were calldginergy Preserving variant of
Collocation Method¢EPCMS) [7]. The above discussion then proves that if the
integral can be substituted by a finite sum, as in the caseenltiéy) is a poly-
nomial, formulae[(16), and consequently](21), become a HBAM), with a
suitable value of:

For sake of completeness, we report the nonlinear systemciasd with the
HBVM (k, s) method, in terms of the fundamental stag¥g and the silent stages
{V;} (see[[®)), by using the notation {17). In this context, thegyresent the dis-
crete counterpart of (16), and may be directly retrievecdMajuating, for example,

8The same clearly happens when the integral is aplgroximatedy a finite sum.



the integrals in[(16) by means of the (exact) quadrature titarimtroduced in[(6):

Yo +h {Z Bi (Z njaszj(cz)) FOD)+> B (Z njaszj(éz)> F(V)
=1 \j=1 =1 \j=1
(22)

= yo+h) nia; (Zﬁle(Cl)f(Yl) + ZBle(él)f(?l)> ;oi=1,...,s.
j=1 =1 =1

Y;

From the above discussion it is clear that, in the non-patyilabcase, supposing
to choose the abscissdé } so that the sums in_(22) converge to an integral as
r =k — s — oo, the resulting formula iﬂl@.Consequently, EPCMs may be
viewed as the limit of HBVMs family, when the Lagrange basisonsidered, as
the number of silent stages grows to infinity.

The above arguments also imply that HBVMs may be as well agph the
non-polynomial case since, in finite precision arithmeti®@VMs are indistin-
guishable from their limit formulaé (16), when a sufficientnmber of silent stages
is introduced. The aspect of havingeactical exact integral, fok large enough,
was already stressed in [2,/10] 11].

3 Infinity Hamiltonian Boundary Value Methods

As is easily argued (and emphasized in Reniark 1), the chéitedasis along
whicha(to + 7h) is expanded (se&l(5)), somehow influences the shape of the fina
formulae [16), that is, to two different polynomial basesrthmay correspond
two different families of formulaBd The guestion then naturally arises about the
best possible choice of the basis to consider. This issubdesa crucial pointin
devising the class of HBVMs in [2] and deserves a particulmmion

Indeed, we recall that our final goal is to devise methodsttedte the suni(9),
representing the line integral, vanish. This is accomplishy the orthogonality
conditions[(1D), whose effect is to make null each term oftima in [9). It follows
that such conditions are in general too demanding, in theat #ne sufficient but
not necessary to get conservativeness. In fact, the sund gopkinciple vanish
even in the case when two ore more of its terms are different fztero. Thiextra
constraintmay affect the general properties of the conservative nastiee are
interested in, and in particular their order.

This was a problem already encountered(in [11] where theocasitfealized
that the use of the Newton basis didn’t assure the expectedlgof the order of

9This obvious requirement for the abscissae will be alwagsmed in the sequel.
0For example, see the method presented in subséciibn 4.2.
1The argument presented here is the analog of the one appéafiil, Remark 3.1].
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the resulting method when the degree of the polynomiigl+ 7h) was increased.
This barrier has been definitively overcomelin [2], where @swinderstood that
the proper polynomial basis to be used by default was thdweo$hifted Legendre
polynomials in the interval0, 1]. We emphasize that, contrary to what happens
for the Lagrange and Newton bases, the Legendre polynoaratsrthogonal and
symmetric in the intervdD, 1] and in addition they arabscissae-freghat is they
by no means depend on the specific distribution of the aleseigs} adopted.
This, in turn, implies that th&aster Functional Equatiofl?) is independent of
the choice of both the abscissgg} and{¢; }: the only requirement being thaf (6)
holds trudtd

From the above arguments, it is clear that the orthogonatityditions [(1D),
i.e., the fulfilment of theMaster Functional Equatiorf12), is only a sufficient
condition for the conservation properfy (9) to hold. Suchoadition becomes
also necessary, when the bagl3 } is orthogonal.

Theorem 1. Let { P;} be an orthogonal basis on the intervél 1|. Then, assum-
ing H (y) to be suitably differentiablel, {9) implies that each terntha sum has to
vanish.

Proof Let us consider, for simplicity, the case of an orthonornadig, and
the expansion

g(r) =VH(o(to+7h) =Y pPur),  pe=(Prng), (>1,
>1

where, in general,

(9) = [ Foglrydr
0
Substituting into[(D), yields

Jj=1 j=1 =1

0>1
Since this has to hold whatever the choice of the funcfitfty), one concludes

that
%ijzo, j=1,...,5.0 (23)

Remark 3. In the case wherg¢ P;} is the shifted Legendre basis, from|(23) one
derives that

v = Sp;, 1=1,...,s,
where S is any nonsingular skew-symmetric matrix. The natural c@éi = J
then leads to(10), with; = (P;, P;) ' =25 — 1.

2We emphasize that this is not the case when using, for exathgléagrange basis.
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The use of the Legendre basis allows the resulting methotaue the best
order and stability properties that one can expect. Thig@sg elucidated in
the two theorems and the corollary below, which representribin result of the
present work.

Although, up to now, we have maintained the treatment of HB\d¥la general
level, it is clear that, in view of the result presented in direan 2, when the curve
o(ty + 7h) is assumed of polynomial type, we will implicitly adopt thedendre
basid This important assumption will be incorporated in the HBVMtmods
from now on: if needed, the use of any other kind of basis valeRplicitly stated,
in order not to create confusion.

Taking into account the consistency conditidns (18), fden{ti6)—{(1%) takes
the form:

s

Yi=y+ h/l <Z(2j — 1)aij]3j(r)> JVH(o(ty+ Th))dr, i=1,...,s.

=1

] (24)
If the Hamiltonian H (y) is a polynomial, the integral appearing at the right-
hand side is exactly computed by a quadrature formula, thsslting into a
HBVM( k,s) method with a sufficient number of silent stages. As alresithssed
in the previous section, in the non-polynomial case suchmifibae represent the
limit of the sequence HBVMK,s), ask — oo.

Definition 2. We call the new limit formul& (24) dnfinity Hamiltonian Boundary
Value Method(in short,co-HBVM or HBVM o, s)).

We emphasize that, in the non-polynomial cake] (24) bec@amesperative
method, only after that a suitable strategy to approximiag¢eintegral is taken
into account (see the next section for additional examplisjhe present case,
if one discretizes théMaster Functional Equatiorf11)-(12), HBVMk, s) are
then obtained, essentially by extending the discrete prol§P2) also to the silent
stages[(B). In order to simplify the exposition, we shall (I8 and introduce the
following notation:

{t:;} = {citu{c}, {wt={BIU{B}. wi=oltottih), fi = f(o(totth)).
(25)
The discrete problem defining the HBMM s) then becomes, with; = 25 — 1,

s t k
Y; = y0+h277j/ Pj(l’)dIZW@Pj(fg)fg, = 1,...,]{}. (26)
j=1 0 =1

B3Actually, the termHamiltonian Boundary Value Methduas been coined in][2], after intro-
ducing the Legendre basis.
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We can cast the set of equations in vector form, by introdythe vectory =
wh ...,y e=(1,...,1)T € R*, and the matriceg, P € R***, with

t;
0
A = diag(m,...,ns), Q=diag(wi,...,wy),

as
y=c®yo+ hIAPTQ) @I f(y), (28)

with an obvious meaning of (y). Consequently, the method can be seen as a
Runge-Kutta method with the following Butcher tableau:

131

.| ZIAPTQ (29)
23

‘ w1 ... Wg

Remark 4. We observe that, provided that the matkixs independent of the basic
abscissad¢;} (as in the case of the Legendre basis), the role of such adzszis
and of the silent abscissge;} is interchangeable. This is not true, for example,
for the Newton and Lagrange bases.

The following result then holds true.

Theorem 2. Provided that the quadrature has order at least(i.e., it is exact for
polynomials of degree at lea3t — 1), HBVM(k,s) has orderp = 2s = 2deg(o),
whatever the choice of the abscissae . ., c.

Proof From the classical result of Butcher (see, elg., [9, Thedtdi), the
thesis follows if the simplifying assumptiods(s), B(p), p > 2s, andD(s — 1)
are satisfied. By looking at the methad(28)4(29), one hastiiegfirst two (i.e.,
C(s) and B(p), p > 2s) are obviously fulfilled: the former by the definition of
the method, the second by hypothesis. The proof is then aistplif we prove
D(s — 1). Such condition can be cast in matrix form, by introducing #ector
e=(1,...,1)T € R*1, and the matrices

Q = diag(1,...,s — 1), D = diag(ti, ..., t), V= (tI"") e R
(see alsd (27)) as
QVTQ(ZAPTQ) = (ee" = V' D) Q,

12



PAZ"QVQ = (ee” — DV). (30)
Since the quadrature is exact for polynomial of degree 1. one has

(zrove), = <Zw/ z)dx (jt)~ 1) (/ / z)dz (5t~ 1)dt)
= (511—/0 Py(x )xﬂdx), i=1,....s, j=1,....,s—1,

where the last equality is obtained by integrating by pavif) §,; the Kronecker
symbol. Consequently,

(PAITQVQ = <1 —ZmPg / )xjdx> = (1—t),
1=1,...,k, j=1,...,5—1,

that is, [30), where the last equality follows from the fdwitt
s 1
Z’I]gpg(t)/ Py(z)r’dx =¥, j=1,...,s—1.0
=1 0

Concerning the stability, the following result holds true.

Theorem 3. For all £ such that the quadrature formula has order at le2ast=
2deg(o), HBVM(,s) is perfectlyA-stable, whatever the choice of the abscissae
C1y...,Cs.

Proof As it has been previously observed, a HBYAMs) is fully charac-
terized by the corresponding polynomialwhich, for & sufficiently large (i.e.,
assuming thaf (6) holds true), satisfies kaster Functional EquatiofiL1)—(12),
which is independent of the choice of the nodes. .., ¢, (since we consider
the Legendre basis). When, in placefdf)) = JVH(y) we put the test equa-
tion f(y) = Ay, we have that the collocation polynomial of the Gauss-Ldgen
method of ordeRs, sayo, satisfies thdlaster Functional Equatiorsince the in-
tegrands appearing in it are polynomials of degree at Bwst1, so thatr = o,.
The proof completes by considering that Gauss-Legendrbadstare perfectly
A-stable[]

A worthwhile consequence of Theorefds 2 and 3 is that one easfer to
HBVM (0, s) all those properties of HBVM(,s) which are satisfied starting from
a givenk > k, on: for example, the order and stability properties.

13



Corollary 1. Whatever the choice of the abscisgae . ., ¢,, HBVM(o, s) (24)
has order2s and is perfectlyA-stable.

Remark 5. From the result of Corollari/1, it follows that HBV(\do, s) has order
2s and is perfectlyA-stable foranychoice for the abscissag, . . . , ¢,. Since such
abscissae can be arbitrarily chosen, we can formally pldasn at the roots of
the Gauss-Legendre polynomial of degeeeOn the other hand, by considering
that, at such abscissae, by settifig(c)} and {b;} the corresponding Lagrange
polynomials and quadrature weights, respectively (sl (19

1 /! 1 < .
E/o Pj(x)fi(:c)dx:b—irzlbrpj(cr)&(q):Pj(cl-), ji=1,...,s,

one obtains (with); = 2j — 1 and by using the notation (1L7)):

Tt ah) = Y mPe) [ Bl + )i
= Yoo (5 [ p@swie) [ pesot i

— b%/o <Z77]PJ(T)/O Pj($)f¢($)dl‘> f(g(t0+7h))d7
1

= EA (1) f(o(to + Th))dT, i=1,...,s.

Consequentlyipr any choice of the abscissée }, HBVM(o, s) provide the same
polynomialo as the “optimal EPCMs” [(21) of ordes [7]. Conversely, an
EPCM is optimal (i.e., it has ordets) only when the abscissas, . . ., ¢, define
a quadrature formula of order at lea8 — 1, whereas different choices result in
methods of lower order [7, Theorem 1].

Remark 6. We also observe that, due to the choice of the shifted Legeuly-
nomial basis (seé (24))

HBVM(oo, s) = lim HBVM(k, s),

k—o0

whatever is the choice of the fundamental abscigsge Consequently, for aklt
large enough, so that thidaster Functional Equatioff2) holds true (e.g., in the

n this sense, they aegjuivalenteven though they generate different discrete problems.
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case of a polynomial HamiltoniaH (y)), all HBVM(k, s) provide the same poly-
nomial o of degrees, independently of the choice of the abscis$ag. Hence,
they areequivalentto each other. This result doesn’t change in the case where
H (y) is not a polynomial, provided thdf (y) is sufficiently differentiable. In this
case, in fact, one formally obtains, in place of thlaster Functional Equation
(@2), an equation of the form

or = L(JVH; h)oy, + i (h), (31)

wherey,(h) = O(h%=572), q;, being the degree of precision of the quadrature at
the right-hand side in{6), so tha, — oo ask — oo. From (12) and[(311), one
then obtains that a8 — 0, assuming thaf is Lipschitzian with constant, and

for a suitable constant/ independent of:

lok = all < huMljox — ol + [l¥k(h)]],

low = oll < (1= hpud) [ (h)| = O(h®*~"%) =0, k — oo

One then concludes that, when using finite precision aritfone;, is indistin-
guishable fronwy, for all k& large enough.

Example 1. As previously mentioned, for the methods studied in [2],ebdasn
a Lobatto distribution of the nodegy = 0,¢1,...,¢} U {é1,..., ¢}, One
has thatdeg(o) = s, so that the order of HBVMs) turns out to be2s, with a
quadrature satisfyind3(2k).

Example 2. For the same reason, when one considers a Gauss distribtdion
the abscissaécy, ..., c;} U{éy, ..., é_s}, one also obtains a method of order
with a quadrature satisfyin@(2k). This case will be further studied in Sectldn 5.

Remark 7. Finally, we also mention that, from Remark 4, HBVIM{ are sym-
metric method&j provided that the abscissdg;} (see [(25)) are symmetrically
distributed (see alsa [2]).

4 Generalization of Hamiltonian BVMs

The approach that has allowed the construction of methatstnserve energy
functions of polynomial type is quite general: that is, by means it depends
on the particular vector space generating the curi¢g¢ nor on the quadrature

15According to thetime reversal symmetry conditiaiefined in[3, p. 218].
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technigue used. As was emphasizedlin [11, Section 2], ilysodédies on the
following two ingredients: the definition afiscrete line integraaind theextended
collocation conditiong13), which zero the line integrdll(6).

Therefore, in a more general context, this procedure canrpesfized as fol-
lows. One first picks a curve(t,+7h), 7 € [0, 1], joining two points of the phase
spacey, = o(ty) andy; = o(ty + h). Such a curve is assumed to lie in a proper
finite dimensional vector spad€ = span{ P (), ..., Ps(x)}, where nowP;(x),

j = 1,...,s, are any linearly independent functions. Therefore theesw (t)
ando (t) will admit an expansion in the formi(5).

The fundamental hypothesis, for this approach to work, a the choice of
W must guarantee that the functioRg )V H (o (t, + 7h)) appearing in[(9) (and
hences(t)T'VH (a(t))) be elementary integrable, that is they are required totadmi
a primitive that can be expressed in terms of elementarytiome If this is the
case, all the steps performed to obtdin| (16) may be repeatédtive integral
substituted by the primitive.

This represents a generalization of what done for polynbié&miltonian
functions not only because the vector spéicemay be generated by non-poly-
nomial functions but also because the analytic solutiohefine integral may be
carried out by any available technique. Hereafter, we tegpoouple of examples
in the class

4.1 A method of order two

We consider a separable Hamiltonian function (for simpfiaie assumen = 1)
H(q,p) = V(p) — Ulq). (32)
Let o (t) be the segment joining, = (qo, po)” toy1 = (q1,p1)":
o(to+7h) =yo + 7(y1 — Yo)-

We havery = 0, ¢; = 1, and the corresponding methadl(24) becomes:

1
_ % -V
a1 q0 / V/(po + T(p1 . po))dT (pl) (pO)
N = | Ula) - Ula)
P1— Po Ulq1) — Ulg
h / U'qo + 7(q1 — qo))dr - — -
0 q1 — 4o

(33)

18w hile the method in Sectidn 4.1 is equivalently obtainalylepplying either(24) o (16), the
same is not true for the fourth-order method derived in 8efti2 where, the use of the Lagrange
basis, would produce a coefficieht = 0 (appearing as a denominator in the resulting formulae

1))
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Formula [3B) is one of the simplediscrete gradient methods$ue to Itoh and
Abe [12], whose general form, for non-separable Hamiltorfiisnctions with one
degree of freedom, reads

01— Qo H{(q1,p0) — H(qo,po)
h q1 — Qo
=J ) 34
P1— Po H(Ql,pl)—H(QhPO) (34)
h P1— Po

The vector appearing at the right-hand sidelof (34) is obthioy replacing the
partial derivatives of{ (¢, p) with increments along theandp axes. Method (34)
is in general first order and nonsymmetric. However, wheriined to separable
Hamiltonian systems, it turns out to be second order and sqtrmﬂ

4.2 A method of order four

To construct a method of order four in the foriml(24) applied3®), we pick a
curveo(t) of degree two, based upon the abscissae 0, ¢; = 1/2, ande, = 1.
Such a method has been already described ih [11] for polyadar@amiltonian
functions: here we consider its generalization to the nolgspmial case. Setting
Yi = (q12,p12)" and, observing that; = (¢1,p1)", the two components of the
curveo(ty + Th) are

( oi(to +7h) ) ( 2(q0 — 2q12 + 1) — (3q0 — 4q1/2 + @1)T + qo )

oa(to + 7h) 2(po — 2p1y2 + p1)7> — (3po — 4p1y2 + p1)T + po
(35)
Consequently[(24) becomes
'3 5.
02 % i (—57' + Z)V (o9(to + Th))dT
Yi = = +h . ;
D12 Do / (—=7+ =)U'(01(to + Th))dT
1
"0 o /0 V'(oa(to + Th))dr
Y, = = +h )
P Po / U'(o1(to + Th))dr
’ (36)

Substituting[(3b) into[(36) we obtain a system in the unkn®wm., p1 /2, ¢1, p.
Looking at [36), we realize that even in the simpler case ofsaesn deriving

17A generalization of(34) introduced in [13] also becomeshndt(33) when applied to Hamil-
tonian functions in the forni.(32).
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from a Hamiltonian function in the forni (82), the elementantegrability of the
integrals in[(24) is not a priori guaranteed. This means thahis case, we cannot
arrive at a general formula analogous[ial (33), in term& @f) andV'(p).

On the other hand, in several cases of interest, such praxaéin be explicitly
computed: hereafter we report a significant example, whietshall use later in
the numerical tests in Sectibh 5.

Example 3. The role of this example is also to show that, when finite [sieai
arithmetic is used, it may b®ot conveniento use thenfinite versionof the meth-
ods, even if the integrals can be analytically evaluateds Wil be evident from
the numerical results in Sectibn b.4. The system we consdlee one defined by
the Hamiltonian function

H(q,p) = a(logq — q) + b(logp — p), (37)

wherea andb are positive constants. The associated sydiém (1) reads

i= b<%—1), p:—a<$—1). (38)

This system is strictly related to the Lotka-Volterra model

¢g= bq(l-p),
{zﬁz—ap(l—Q), (39)

in that system (39) may be recast as the Poisson sy;ste% JVH(y), where

n(q,p) = —é is calledintegrating factor

Systems[(39) and (88) share the same Hamiltonian fundtidngs first in-
tegral and, consequently, they share the same curves esttraégs in the phase
plane. Method[(36) applied tb (39) reads

—b+ 3p log(|po/p1]) 1.b Po—8pi/2+T7p1
q g 47 po—2p1/2+p1 2 C1 po—2p1/2+p1
1/2 — 90 —3po+4p1/2—p1 Po—4p1/2+3p1
DE : (arctanh(cil) — arctanh(——&=——)
— . (40)
P1/2 — Po 3 log(lgo/q1]) 1 a 90—8q1/2+7q
a— 3a — 5
h/2 47 90—2q1/2+q1 2C2 qo—2q1/2+q1
—3q0+4q1/2—q1 qo—4q1/2+3q1
: (arctanh(T) — arctanh(=—*—)
a1 — 4o 2b po—4p1/2+3p1 3po—4p1/2+p1
- —b— & |arctanh(=—F*——) + arctanh(——z"—)
= )
b1 — Do 2a q0—4q1/2+3q1 3g90—4q1/2+q1
- a+ & |arctanh(=——F——) + arctanh(——-"—)
(41)
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where
Cy = (p§ + 16p7 )5 + pi — 8pop1/2 — 2pop1 — 8p1/2p1) 2,
Cy = (qg + 16(1%/2 + (J% - 8%%/2 — 2qoq1 — 8(]1/2%)1/2-

5 HBVMs based upon Gauss quadrature

As anticipated in Examplel 2, we now study the properties ef HBVM(k;, s)
which is defined over the set éfdistinct abscissae,

{tl,...,tk} = {Cl,...,CS}U{él,...,ékfs},

coinciding with the Gauss-Legendre nodeg(nl], i.e., the roots of the shifted
Legendre polynomial of degrée The corresponding polynomialhas then de-
grees. By virtue of Theorem§]2 anld 3 (see also Renidrk 7), such methc
symmetric, perfectlyd-stable, and of orde2s. They reduce to Gauss-Legendre
collocation methods, whelh= s, and are exact for polynomial Hamiltonian func-
tions of degree, provided that
kzg. (42)

By recalling what stated in Remdrk 6, for &lkufficiently large so that (6) holds,
HBVM (k, s) based on th& Gauss-Legendre abscissae[inl] are equivalent
to HBVM (k, s) based onk + 1 Lobatto abscissae ift), 1] (see [2]), since both
methods define the same polynonuabf degre&

As matter of fact, we have run HBV\, s) based on Gauss-Legendre nodes,
and HBVM(k, s) based on the Lobatto nodes, obtaining the same results on the
polynomial test problems reported In [2], which are brief@igalled in the sequel.

5.1 Testproblem 1

Let us consider the problem characterized by the polynoraatiltonian (4.1) in
(5],

3 6 4

3

Pop ¢ d g
Hpg=0C-2,L .2 ¢
o) =3 -5ttt

having degreer = 6, starting at the initial poiny, = (¢(0),p(0))T = (0,1)7,

so thatH (yy) = 0. For such a problem, in [5] it has been experienced a numer-
ical drift in the discrete Hamiltonian, when using the fdudrder Lobatto I11A
method with stepsizé = 0.16, as confirmed by the plot in Figuté 1. When us-
ing the fourth-order Gauss-Legendre method the drift gieaps, even though the

: (43)

| =

18n the non-polynomial case, they converge to the same HBMM), ask — oo.
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Table 1: Maximum difference between the numerical soliobtained through

the fourth-order HBVME, 2) methods based on Lobatto abscissae and Gauss-
Legendre abscissae for increasing valuek, gfroblem [45),10° steps with step-
sizeh = 0.1.

h=0.1

3.97- 1071
2.29.1073
2.01-1078
1.37-10° 1
5.88 - 10713

O 00O~ DN

Hamiltonian is not exactly preserved along the discretatgmi, as is shown by
the plot in Figurd 2. On the other hand, by using the fourttheoHBVM(6,2)
with the same stepsize, the Hamiltonian turns out to be predeaup to machine
precision, as shown in Figuré 3, since such method exacatilsgpves polynomial
Hamiltonians of degree up to 6. In such a case, the numedatiens obtained
by using the Lobatto noddgg, = 0, ¢y, ..., cs = 1} or the Gauss-Legendre nodes
{c1,...,ce} are the same.

5.2 Test problem 2

The second test problem, having a highly oscillating sohutis the Fermi-Pasta-
Ulam problem (see [8, Section|.5.1]), defined by the Hamilia

1 2 i

m w m
=3 > (Whii+15)+ 1 D (g2 = qui1)’+ > (quiss — q)*, (44)
i=1 1=1

1=0

with ¢ = ¢2,,+1 = 0, m = 3, w = 50, and starting vector

In such a case, the Hamiltonian function is a polynomial ajrde 4, so that
the fourth-order HBVM(4,2) method, either when using thédatio nodes or the
Gauss-Legendre nodes, is able to exactly preserve the téamaih, as confirmed
by the plot in Figuré€ls, obtained with stepsize= 0.05. Conversely, by using the
same stepsize, both the fourth-order Lobatto IIIA and Gagggendre methods
provide only an approximate conservation of the Hamiltoni@as shown in the
plots in Figures ¥ and 5, respectively.
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Figure 1: Fourth-order Lobatto I[IIA method,= 0.16, problem [48): drift in the
Hamiltonian.
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Figure 2: Fourth-order Gauss-Legendre method; 0.16, problem [(48): H ~
1076,
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Figure 3: Fourth-order HBVM(6,2) mzejthoﬂ,: 0.16, problem[(4B):H ~ 1016,
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Figure 4: Fourth-order Lobatto IlIA methodl,= 0.05, problem[(44): H — Hy| ~
1073,
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Figure 5: Fourth-order Gauss-Legendre mettioe; 0.05, problem [(44):|H —
H0| ~ 1073.
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Figure 6: Fourth-order HBVM(4,2) methoH,= 0.05, problem [(44): H — Hy| ~
10~14,



5.3 Test problem 3 (non-polynomial Hamiltonian)

In the previous examples, the Hamiltonian function was gmpainial. Neverthe-
less, as observed above, also in this case HBA/BJ(are expected to produce a
practical conservation of the energy when applied to systems definead imn-
polynomial Hamiltonian function that can be locally wellmpximated by a poly-
nomial. As an example, we consider the motion of a chargeietfsain a magnetic
field with Biot-Savart potenti@ It is defined by the Hamiltonian[2]

H(:C, y7 z? 567 y’ 2) = (45)

ﬁ [(i—a%)Q + <y—a%)2 + (Z'+a10g(9))2] :

with o = /22 + 92, a = e By, m is the particle mass; is its charge, and, is
the magnetic field intensity. We have used the values

with starting point
=05 y=10, z=0, i=-01, §=-03, 2=0.

By using the fourth-order Lobatto IlIA method, with stepsiz = 0.1, a drift is
again experienced in the numerical solution, as is showngdargé[7. By using
the fourth-order Gauss-Legendre method with the sameiségyibe drift disap-
pears even though, as shown in Figure 8, the value of the ltamah is pre-
served within an error of the order ®6—3. On the other hand, when using the
HBVM(6,2) method with the same stepsize, the error in the Htanman decreases
to an order ofl0~!® (see Figur€l9), thus giving a practical conservation. Final
in Table[1 we list the maximum absolute difference betweenrnihmerical so-
lutions over10? integration steps, computed by the HBYM2) methods based
on Lobatto abscissae and on Gauss-Legendre abscissagrass, with stepsize
h = 0.1. As expected, the difference tends to 0,kascreases, since the two
sequences of methods tend to the same limit, given by the HBYN\2) (seel(24)
with s = 2).

5.4 Test problem 4 (non-polynomial Hamiltonian)

We finally solve the Hamiltonian system {38) by using the {&lme method[(3B),
the fourth-order formuld (40)=(#1), and the HBVM(2), which has order four

19This kind of motion causes the well known phenomenoawbra borealis
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Figure 7: Fourth-order Lobatto IlIIA method, = 0.1, problem [[45): drift in the
Hamiltonian.
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Figure 8: Fourth-order Gauss-Legendre methods 0.1, problem [(45):|H —
H0| ~ 1073.
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Figure 9: Fourth-order HBVM(6,2) methofl,= 0.1, problem [(45):|H — Hy| ~
10719,



and degree of precisioiD (that is, according td(42), it precisely conserves the
energy of polynomial Hamiltonians of degree up ). We have set = b= 11in
formula [37), and integrated over a time inter{@l>000] with stepsizeh = 0.5
and(qo, po) = (0.5,0.5) as initial condition.

Figure 10 reports the numerical Hamiltonian function a&ged with the three
methods. The occurrence of jumps in the first two graphsyleftire) is due to the
fact that both formulaé (33) and (40)=(41) may become iliditbioned for certain
values of the state vector. For example (see Figure 11),eatwh consecutive
timest = 2830.5 andt = 2831, the state vectors associated with the Itoh-Abe
method[(3B) are, respectively,

[q1,p1] ~ (0.39988668, 1.4216560)7,  [go, po] =~ (0.39988872, 0.67130503),

which shows that; may be very close tg, even for large values of. This
causes some cancellation in the subtraction at the rigid-ls&dde of [(3B) and,
hence, a jump of the subsequent branch of the numericattoayeon a different
level curve. However, since, in general, the numericaéti@ry densely fills the
level curveH (y) = H(yo), it may be argued that the occurrence of such jumps
are systematic and frequent when the dynamics is tracedeolarg time. The
use of finite arithmetic eventually destroys the theoréttoaservation property.

A similar argument may be applied to discuss the behavioheffourth-order
method [(4D)-+(411).

Although the HBVM method does not provide a theoretical eovation of
the energy, as is the case for the above cited methods, igvioeln finite arith-
metic would suggest the opposite (see the right picture gurie(10), as already
emphasized at the beginning of Exanigle 3.

6 Conclusions

In this paper, the newly introducddamiltonian Boundary Value Methods (HB-
VMs), a class of numerical methods able to exactly preserve potjal Hamilto-
nians of any degree, have been re-derived in a unifying fwerle Such frame-
work relies on the use of line integrals, which are approxeddy suitable dis-
crete counterparts (actually, they are exact, when the Haman is a polyno-
mial). In this context, the limit of the methods, as the numbkethe so called
silent stagegends to infinity, is easily obtained. When the underlyindypo-
mial basis upon which the HBVM is constructed is the Lagradmass, such limit
formulae coincide with the recently introducEdergy Preserving variant of Col-
location Methodsif instead one uses the shifted Legendre polynomial btsss,
corresponding HBVMs have the highest possible order ancbgbelr limit for-
mulae, thelnfinity Hamiltonian Boundary Value Methodsdependently of the
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Figure 10: Left picture: absolute error of the Hamiltoniamdtion [3T) evalu-
ated along the numerical solutions computed by the Itoh+#Abthod [(3B) (lower
curve) and formula (40)=(41) (upper curve). The jumps arepmatic of ill-
conditioning of the formulae for certain values of the siwnt Right picture: the
same kind of plot produced by the HBVM formula of ordeandk = 10 Gaussian
abscissae{f — Hy| ~ 10712).

2.2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 22

Figure 11: Trajectory in the phase plane computed by theAtod method[(33).
The small circles locate the solution at the two consecuimest = 2830.5 and

t = 2831. The very close values of the varialgléor such two points causes loss
of significant digits in the subsequent branch of the trajgct
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considered abscissae. Any limit formula, when discretifaitiinto the HBVMs
class. Possible extensions of the approach have been atsihe#l, along with a
number of numerical tests. Such tests confirm that, in thi¢ éifrthe silent stages
tending to infinity, all HBVMs withs (unknown)fundamental stage®gnd to the
samelimit method, which is characterized by the eigenfuncticgigtive to the
unit eigenvalue) of a certain operator, which is indepenhdéthe choice of the
abscissae.
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